Medication-related osteonecrosis of the jaws after tooth extraction in senescent female mice treated with zoledronic acid: Microtomographic, histological and immunohistochemical characterization (original) (raw)

Abstract

Treatment with cumulative dosages of zoledronic acid (ZA) in elderly patients is a risk factor for the development of medication-related osteonecrosis of the jaws (MRONJ), mainly related to surgical triggers such as tooth extraction. However, animal models for the investigation and understanding of MRONJ pathophysiology in senescent and postmenopausal stages remains to be developed and characterized. The aim of this study was to analyze MRONJ development in senescent female mice treated with cumulative dosages of ZA. For this purpose, twenty 129/Sv female mice, 64 weeks old, were treated with 0.9% saline solution as control group (n = 10), and with ZA at 250μg/Kg (n = 10), once a week, starting 4 weeks before the upper right incisor extraction and until the end of the experimental time points (7 days and 21 days). At 7 and 21 days post-surgery, specimens were harvested for microCT, histological, birefringence and immunohistochemical analysis. Clinically, an incomplete epithelialization was observed in ZA group at 7 days and a delayed bone matrix mineralization and collagen maturation at 7 and 21 days compared to the controls. Controls revealed sockets filled with mature bone at 21 days as observed by microCT and birefringence, while ZA group presented delayed bone deposition at 7 and 21 days, as well increased leukocyte infiltration and blood clot at 7 days, and increased bone sequestrum and empty osteocyte lacunae at 21 days (p<0.05). Also, ZA group presented decreased quantity of TGFb+ and Runx-2+ cells at 7 days, and decreased quantity of TRAP+ osteoclasts compared to the control at 21 days (p<0.05).

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (80)

  1. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw-2014 update. J Oral Maxillofac Surg 2014. 72(10): p. 1938-56. https://doi.org/10.1016/j.joms.2014.04.031 PMID: 25234529
  2. Khan AA, Morrison A, Kendler DL, Rizzoli R, Hanley DA, Felsenberg D, et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the International Recommendations for Manage- ment From the International Task Force on ONJ. J Clin Densitom 2017. 20(1): p. 8-24. https://doi.org/ 10.1016/j.jocd.2016.09.005 PMID: 27956123
  3. Schwartz HC. American Association of Oral and Maxillofacial Surgeons position paper on medication- related osteonecrosis of the jaw-2014 update and CTX. J Oral Maxillofac Surg, 2015. 73(3): p. 377.
  4. Mavrokokki T, Cheng A, Stein B, Goss A. Nature and frequency of bisphosphonate-associated osteo- necrosis of the jaws in Australia. J Oral Maxillofac Surg, 2007. 65(3): p. 415-23. https://doi.org/10\. 1016/j.joms.2006.10.061 PMID: 17307586
  5. Yarom N, Yahalom R, Shoshani Y, Hamed W, Regev E, Elad S. Osteonecrosis of the jaw induced by orally administered bisphosphonates: incidence, clinical features, predisposing factors and treatment outcome. Osteoporos Int, 2007. 18(10): p. 1363-70. https://doi.org/10.1007/s00198-007-0384-2 PMID: 17598065
  6. Kwon YD, Ohe JY, Kim DY, Chung DJ, Park YD. Retrospective study of two biochemical markers for the risk assessment of oral bisphosphonate-related osteonecrosis of the jaws: can they be utilized as risk markers? Clin Oral Implants Res, 2011. 22(1): p. 100-5. https://doi.org/10.1111/j.1600-0501.2010\. 01965.x PMID: 20946206
  7. Hoff AO, Toth BB, Altundag K, Johnson MM, Warneke CL, Hu M, et al. Frequency and risk factors asso- ciated with osteonecrosis of the jaw in cancer patients treated with intravenous bisphosphonates. J Bone Miner Res, 2008. 23(6): p. 826-36. https://doi.org/10.1359/jbmr.080205 PMID: 18558816
  8. Berenson JR, Vescio R, Henick K, Nishikubo C, Rettig M, Swift RA, et al. A Phase I, open label, dose ranging trial of intravenous bolus zoledronic acid, a novel bisphosphonate, in cancer patients with meta- static bone disease. Cancer, 2001. 91(1): p. 144-54. PMID: 11148571
  9. Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modi- fying agents in metastatic breast cancer. J Clin Oncol, 2011. 29(9): p. 1221-7. https://doi.org/10.1200/ JCO.2010.32.5209 PMID: 21343561
  10. Hamdy RC. Zoledronic acid: clinical utility and patient considerations in osteoporosis and low bone mass. Drug Des Devel Ther, 2010. 4: p. 321-35. https://doi.org/10.2147/DDDT.S6287 PMID: 21151620
  11. Lambrinoudaki I, Vlachou S, Galapi F, Papadimitriou D, Papadias K. Once-yearly zoledronic acid in the prevention of osteoporotic bone fractures in postmenopausal women. Clin Interv Aging, 2008. 3(3): p. 445-51. PMID: 18982915
  12. Marx RE, Tursun R. Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradione- crosis: a blinded histopathologic comparison and its implications for the mechanism of each disease. Int J Oral Maxillofac Surg, 2012. 41(3): p. 283-9. https://doi.org/10.1016/j.ijom.2011.12.016 PMID: 22244079
  13. De Antoni CC, Matsumoto MM, Silva AA, Curi MM, Santiago JF Jr, Sassi LM, et al. Medication-related osteonecrosis of the jaw, osteoradionecrosis, and osteomyelitis: A comparative histopathological study. Braz Oral Res, 2018. 32: p. e23. https://doi.org/10.1590/1807-3107bor-2018.vol32.0023 PMID: 29723337
  14. Vermeer J, Renders G, van Duin MA, Jansen I, Bakker LF, Kroon SA, et al. Bone-site-specific responses to zoledronic acid. Oral Dis, 2017. 23(1): p. 126-133. https://doi.org/10.1111/odi.12587 PMID: 27706930
  15. Akita Y, Kuroshima S, Nakajima K, Hayano H, Kanai R, Sasaki M, et al. Effect of anti-angiogenesis induced by chemotherapeutic monotherapy, chemotherapeutic/bisphosphonate combination therapy and anti-VEGFA mAb therapy on tooth extraction socket healing in mice. J Bone Miner Metab, 2018. 36(5): p. 547-559. https://doi.org/10.1007/s00774-017-0872-1 PMID: 29043461
  16. Gao SY, Zheng GS, Wang L, Liang YJ, Zhang SE, Lao XM, et al. Zoledronate suppressed angiogenesis and osteogenesis by inhibiting osteoclasts formation and secretion of PDGF-BB. PLoS One, 2017. 12 (6): p. e0179248. https://doi.org/10.1371/journal.pone.0179248 PMID: 28594896
  17. Zhang Q, Atsuta I, Liu S, Chen C, Shi S, Shi S, et al. IL-17-mediated M1/M2 macrophage alteration con- tributes to pathogenesis of bisphosphonate-related osteonecrosis of the jaws. Clin Cancer Res, 2013. 19(12): p. 3176-88. https://doi.org/10.1158/1078-0432.CCR-13-0042 PMID: 23616636
  18. de Barros Silva PG, de Oliveira CC, Brizeno L, Wong D, Lima Ju ´nior R, Gonc ¸alves RP, et al. Immune cellular profile of bisphosphonate-related osteonecrosis of the jaw. Oral Dis, 2016. 22(7): p. 649-57. https://doi.org/10.1111/odi.12513 PMID: 27232600
  19. Hoefert S, Schmitz I, Weichert F, Gaspar M, Eufinger H. Macrophages and bisphosphonate-related osteonecrosis of the jaw (BRONJ): evidence of local immunosuppression of macrophages in contrast to other infectious jaw diseases. Clin Oral Investig, 2015. 19(2): p. 497-508. https://doi.org/10.1007/ s00784-014-1273-7 PMID: 24957986
  20. Tao L, Reese TA. Making Mouse Models That Reflect Human Immune Responses. Trends Immunol, 2017. 38(3): p. 181-193. https://doi.org/10.1016/j.it.2016.12.007 PMID: 28161189
  21. Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci, 2016. 152: p. 244-8. https://doi.org/ 10.1016/j.lfs.2015.10.025 PMID: 26596563
  22. Biguetti CC, Cavalla F, Silveira EM, Fonseca AC, Vieira AE, Tabanez AP, et al. Oral implant osseointe- gration model in C57Bl/6 mice: microtomographic, histological, histomorphometric and molecular char- acterization. Journal of Applied Oral Science, 2018: p. 1-24.
  23. Kim S, Williams DW, Lee C, Kim T, Arai A, Shi S, et al. IL-36 Induces Bisphosphonate-Related Osteo- necrosis of the Jaw-Like Lesions in Mice by Inhibiting TGF-beta-Mediated Collagen Expression. J Bone Miner Res, 2017. 32(2): p. 309-318. https://doi.org/10.1002/jbmr.2985 PMID: 27567012
  24. Kim T, Kim S, Song M, Lee C, Yagita H, Williams DW, et al. Removal of Pre-Existing Periodontal Inflam- matory Condition before Tooth Extraction Ameliorates Medication-Related Osteonecrosis of the Jaw- Like Lesion in Mice. Am J Pathol, 2018. 188(10): p. 2318-2327. https://doi.org/10.1016/j.ajpath.2018\. 06.019 PMID: 30059656
  25. Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T. Transplantation of noncultured Stromal Vascular Fraction Cells of Adipose Tissue Ameliorates Osteonecrosis of the Jaw-Like Lesions in Mice. J Bone Miner Res, 2018. 33(1): p. 154-166. https://doi.org/10.1002/jbmr.3292 PMID: 28902422
  26. Movila A, Mawardi H, Nishimura K, Kiyama T, Egashira K, Kim JY, et al. Possible pathogenic engage- ment of soluble Semaphorin 4D produced by gamma deltaT cells in medication-related osteonecrosis of the jaw (MRONJ). Biochem Biophys Res Commun, 2016. 480(1): p. 42-47. https://doi.org/10.1016/j. bbrc.2016.10.012 PMID: 27720716
  27. Sun Y, Kaur K, Kanayama K, Morinaga K, Park S, Hokugo A, et al. Plasticity of Myeloid Cells during Oral Barrier Wound Healing and the Development of Bisphosphonate-related Osteonecrosis of the Jaw. J Biol Chem, 2016. 291(39): p. 20602-16. https://doi.org/10.1074/jbc.M116.735795 PMID: 27514746
  28. Mawardi H, Giro G, Kajiya M, Ohta K, Almazrooa S, Alshwaimi E. A role of oral bacteria in bisphospho- nate-induced osteonecrosis of the jaw. J Dent Res, 2011. 90(11): p. 1339-45. https://doi.org/10.1177/ 0022034511420430 PMID: 21921248
  29. Matsuura Y, Atsuta I, Ayukawa Y, Yamaza T, Kondo R, Takahashi A, et al. Therapeutic interactions between mesenchymal stem cells for healing medication-related osteonecrosis of the jaw. Stem Cell Res Ther, 2016. 7(1): p. 119. https://doi.org/10.1186/s13287-016-0367-3 PMID: 27530108
  30. Soundia A, Hadaya D, Esfandi N, de Molon RS, Bezouglaia O, Dry SM, et al. Osteonecrosis of the jaws (ONJ) in mice after extraction of teeth with periradicular disease. Bone, 2016. 90: p. 133-41. https:// doi.org/10.1016/j.bone.2016.06.011 PMID: 27327410
  31. Song M, Alshaikh A, Kim T, Kim S, Dang M, Mehrazarin S et al. Preexisting Periapical Inflammatory Condition Exacerbates Tooth Extraction-induced Bisphosphonate-related Osteonecrosis of the Jaw Lesions in Mice. J Endod, 2016. 42(11): p. 1641-1646. https://doi.org/10.1016/j.joen.2016.07.020 PMID: 27637460
  32. Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, et al. Cell-based immunotherapy with mesenchy- mal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res, 2010. 25(7): p. 1668-79. https://doi.org/10.1002/jbmr.37 PMID: 20200952
  33. Bi Y, Gao Y, Ehirchiou D, Cao C, Kikuiri T, Le A, et al. Bisphosphonates cause osteonecrosis of the jaw- like disease in mice. Am J Pathol, 2010. 177(1): p. 280-90. https://doi.org/10.2353/ajpath.2010.090592 PMID: 20472893
  34. Su J, Feng M, Han W, Zhao H. The effects of bisphosphonate on the remodeling of different irregular bones in mice. J Oral Pathol Med, 2015. 44(8): p. 638-48. https://doi.org/10.1111/jop.12281 PMID: 25370709
  35. Zhao Y, Wang L, Liu Y, Akiyama K, Chen C, Atsuta I, et al. Technetium-99 conjugated with methylene diphosphonate ameliorates ovariectomy-induced osteoporotic phenotype without causing osteonecro- sis in the jaw. Calcif Tissue Int, 2012. 91(6): p. 400-8. https://doi.org/10.1007/s00223-012-9649-7 PMID: 23064899
  36. Kang B, Cheong S, Chaichanasakul T, Bezouglaia O, Atti E, Dry SM, et al. Periapical disease and bis- phosphonates induce osteonecrosis of the jaws in mice. J Bone Miner Res, 2013. 28(7): p. 1631-40. https://doi.org/10.1002/jbmr.1894 PMID: 23426919
  37. Park S, Kanayama K, Kaur K, Tseng HH, Banankhah S, Quje DT, et al. Osteonecrosis of the Jaw Developed in Mice: Disease variants regulated by Gammadelta T Cells in oral mucosal barrier immu- nity. J Biol Chem, 2015. 290(28): p. 17349-66. https://doi.org/10.1074/jbc.M115.652305 PMID: 26013832
  38. Aghaloo TL, Cheong S, Bezouglaia O, Kostenuik P, Atti E, Dry SM, et al. RANKL inhibitors induce osteonecrosis of the jaw in mice with periapical disease. J Bone Miner Res, 2014. 29(4): p. 843-54. https://doi.org/10.1002/jbmr.2097 PMID: 24115073
  39. de Molon RS, Cheong S, Bezouglaia O, Dry SM, Pirih F, Cirelli JA, et al. Spontaneous osteonecrosis of the jaws in the maxilla of mice on antiresorptive treatment: a novel ONJ mouse model. Bone, 2014. 68: p. 11-9. https://doi.org/10.1016/j.bone.2014.07.027 PMID: 25093262
  40. Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, et al. Genetic differences among C57BL/6 substrains. Exp Anim, 2009. 58(2): p. 141-9. PMID: 19448337
  41. Sabsovich I, Clark JD, Liao G, Peltz G, Lindsey DP, Jacobs CR, et al. Bone microstructure and its asso- ciated genetic variability in 12 inbred mouse strains: microCT study and in silico genome scan. Bone, 2008. 42(2): p. 439-51. https://doi.org/10.1016/j.bone.2007.09.041 PMID: 17967568
  42. de Molon RS, Hsu C, Bezouglaia O, Dry SM, Pirih FQ, Soundia A, et al. Rheumatoid Arthritis Exacer- bates the Severity of Osteonecrosis of the Jaws (ONJ) in Mice. A Randomized, Prospective, Controlled Animal Study. J Bone Miner Res, 2016. 31(8): p. 1596-607. https://doi.org/10.1002/jbmr.2827 PMID: 26950411
  43. de Molon RS, Shimamoto H, Bezouglaia O, Pirih FQ, Dry SM, Kostenuik P, et al. OPG-Fc but Not Zole- dronic Acid Discontinuation Reverses Osteonecrosis of the Jaws (ONJ) in Mice. J Bone Miner Res, 2015. 30(9): p. 1627-40. https://doi.org/10.1002/jbmr.2490 PMID: 25727550
  44. Co ´rdova LA, Guilbaud F, Amiaud J, Battaglia S, Charrier C, Lezot F, et al. Severe compromise of preos- teoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw. J Cranio- maxillofac Surg, 2016. 44(9): p. 1387-94. https://doi.org/10.1016/j.jcms.2016.07.015 PMID: 27519659
  45. Williams DW, Lee C, Kim T, Yagita H, Wu H, Park S, et al. Impaired bone resorption and woven bone formation are associated with development of osteonecrosis of the jaw-like lesions by bisphosphonate and anti-receptor activator of NF-kappaB ligand antibody in mice. Am J Pathol, 2014. 184(11): p. 3084-93. https://doi.org/10.1016/j.ajpath.2014.07.010 PMID: 25173134
  46. Zhang Q, Yu W, Lee S, Xu Q, Naji A, Le AD. Bisphosphonate Induces Osteonecrosis of the Jaw in Dia- betic Mice via NLRP3/Caspase-1-Dependent IL-1beta Mechanism. J Bone Miner Res, 2015. 30(12): p. 2300-12. https://doi.org/10.1002/jbmr.2577 PMID: 26081624
  47. Gutta R, Louis PJ. Bisphosphonates and osteonecrosis of the jaws: science and rationale. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007. 104(2): p. 186-93. https://doi.org/10.1016/j.tripleo. 2006.12.004 PMID: 17448709
  48. Canderelli R, Leccesse LA, Miller NL, Unruh Davidson J. Benefits of hormone replacement therapy in postmenopausal women. J Am Acad Nurse Pract, 2007. 19(12): p. 635-41. https://doi.org/10.1111/j. 1745-7599.2007.00269.x PMID: 18042129
  49. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet Clin Pathol, 2012. 41(1): p. 27-31. https:// doi.org/10.1111/j.1939-165X.2012.00418.x PMID: 22390425
  50. Byers SL, Wiles MV, Dunn SL, Taft RA. Mouse estrous cycle identification tool and images. PLoS One, 2012. 7(4): p. e35538. https://doi.org/10.1371/journal.pone.0035538 PMID: 22514749
  51. Cora MC, Kooistra L, Travlos G. Vaginal Cytology of the Laboratory Rat and Mouse: Review and Crite- ria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicol Pathol, 2015. 43(6): p. 776-93. https://doi.org/10.1177/0192623315570339 PMID: 25739587
  52. Vieira AE, Repeke CE, Ferreira Junior Sde B, Colavite PM, Biguetti CC, Oliveira RC, et al. Intramem- branous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One, 2015. 10(5): p. e0128021. https://doi. org/10.1371/journal.pone.0128021 PMID: 26023920
  53. Biguetti CC, Vieira AE, Cavalla F, Fonseca AC, Colavite PM, Silva RM, et al. CCR2 Contributes to F4/ 80+ Cells Migration Along Intramembranous Bone Healing in Maxilla, but Its Deficiency Does Not Criti- cally Affect the Healing Outcome. Front Immunol, 2018. 9: p. 1804. https://doi.org/10.3389/fimmu. 2018.01804 PMID: 30147688
  54. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Mu ¨ller R. Guidelines for assess- ment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 2010. 25(7): p. 1468-86. https://doi.org/10.1002/jbmr.141 PMID: 20533309
  55. Vivan RR, Mecca CE, Biguetti CC, Renno ´AC, Okamoto R, Cavenago BC, et al. Experimental maxillary sinus augmentation using a highly bioactive glass ceramic. J Mater Sci Mater Med, 2016. 27(2): p. 41. https://doi.org/10.1007/s10856-015-5652-7 PMID: 26712707
  56. Fakhouri WD, Metwalli K, Naji A, Bakhiet S, Quispe-Salcedo A, Nitschke L, et al. Intercellular Genetic Interaction Between Irf6 and Twist1 during Craniofacial Development. Sci Rep. 2017 Aug 2; 7(1):7129. https://doi.org/10.1038/s41598-017-06310-z PMID: 28769044
  57. Thompson J, Mendoza F, Tan E, Gaggar AS, Biguetti C, Fakhouri WD. A cleft lip and palate gene, IRF6, is involved in bone mineralization. Dev. Dyn. 2019, 248(3): 221-232.
  58. Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws, American Association of Oral and Maxillofacial Surgeons. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg, 2007. 65(3): p. 369-76. https://doi.org/10.1016/j.joms.2006.11.003 PMID: 17307580
  59. Flurkey K, Currer JM, Harrison DE. The mouse in aging research, in: Fox JG, et al., (eds.). The Mouse in Biomedical Research. Elsevier: 2nd Edition American College Laboratory Animal Medicine, Bur- lington, MA 2007, pp. 637-672.
  60. The NAMS 2017 Hormone Therapy Position Statement Advisory Panel. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause, 2017. 24(7): p. 728-753. https://doi.org/10.1097/GME.0000000000000921 PMID: 28650869
  61. Ervolino E, Statkievicz C, Toro LF, de Mello-Neto JM, Cavazana TP, Issa JPM, et al. Antimicrobial pho- todynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone, 2018. 120: p. 101-113. https://doi.org/10.1016/j.bone.2018.10.014 PMID: 30339908
  62. Matsumoto MA, de Abreu Furquim EM, Gonc ¸alves A, Santiago-Ju ´nior JF, Saraiva PP, Cardoso CL, et al. Aged rats under zoledronic acid therapy and oral surgery. J Craniomaxillofac Surg, 2017. 45(5): p. 781-787. https://doi.org/10.1016/j.jcms.2017.02.002 PMID: 28318924
  63. Gavalda C, Bagan JV. Concept, diagnosis and classification of bisphosphonate-associated osteonecro- sis of the jaws. A review of the literature. Med Oral Patol Oral Cir Bucal, 2016. 21(3): p. e260-70. https://doi.org/10.4317/medoral.21001 PMID: 26827066
  64. Curra C, Cardosos CL, Ferreira O Jr, Curi M, Matsumoto MA, Cavenago BC, et al. Medication-related osteonecrosis of the jaw. Introduction of a new modified experimental model. Acta Cir Bras, 2016. 31 (5): p. 308-13. https://doi.org/10.1590/S0102-865020160050000003 PMID: 27275851
  65. Gross C, Weber M, Creutzburg K, Mo ¨bius P, Preidl R, Amann K, et al. Osteoclast profile of medication- related osteonecrosis of the jaw secondary to bisphosphonate therapy: a comparison with osteoradio- necrosis and osteomyelitis. J Transl Med, 2017. 15(1): p. 128. https://doi.org/10.1186/s12967-017- 1230-8 PMID: 28587628
  66. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, et al. Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res, 1999. 14(6): p. 839-49. https://doi.org/10\. 1359/jbmr.1999.14.6.839 PMID: 10352091
  67. Rogers MJ, Crockett JC, Coxon FP, Mo ¨nkko ¨nen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone, 2011. 49(1): p. 34-41. https://doi.org/10.1016/j.bone.2010.11.008 PMID: 21111853
  68. Bonewald LF. The amazing osteocyte. J Bone Miner Res, 2011. 26(2): p. 229-38. https://doi.org/10\. 1002/jbmr.320 PMID: 21254230
  69. Loiselle AE, Jiang JX, Donahue HJ. Gap junction and hemichannel functions in osteocytes. Bone, 2013. 54(2): p. 205-12. https://doi.org/10.1016/j.bone.2012.08.132 PMID: 23069374
  70. Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE. The canalicular structure of compact bone in the rat at different ages. Microsc Microanal, 2002. 8(2): p. 104-15. PMID: 12533240
  71. Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, et al. The metalloproteinase MT1- MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci, 2005. 118(Pt 1): p. 147-56. https://doi.org/10.1242/jcs.01581 PMID: 15601659
  72. Bloch SL, Kristensen SL, Sørensen MS. The viability of perilabyrinthine osteocytes: a quantitative study using bulk-stained undecalcified human temporal bones. Anat Rec (Hoboken), 2012. 295(7): p. 1101- 8.
  73. Marx RE. A decade of bisphosphonate bone complications: what it has taught us about bone physiol- ogy. Int J Oral Maxillofac Implants, 2014. 29(2): p. e247-58. https://doi.org/10.11607/jomi.te61 PMID: 24683588
  74. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res, 2000. 15(1): p. 60-7. https://doi.org/10.1359/ jbmr.2000.15.1.60 PMID: 10646115
  75. Verborgt O, Tatton NA, Majeska RJ, Schaffler MB. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res, 2002. 17 (5): p. 907-14. https://doi.org/10.1359/jbmr.2002.17.5.907 PMID: 12009022
  76. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res, 2006. 21(4): p. 605-15. https://doi.org/10.1359/jbmr.060107 PMID: 16598381
  77. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteo- cyte populations. Bone, 2012. 50(5): p. 1115-22. https://doi.org/10.1016/j.bone.2012.01.025 PMID: 22342796
  78. Kogianni G, Mann V, Noble BS. Noble, Apoptotic bodies convey activity capable of initiating osteoclas- togenesis and localized bone destruction. J Bone Miner Res, 2008. 23(6): p. 915-27. https://doi.org/10\. 1359/jbmr.080207 PMID: 18435576
  79. Wehrhan F, Hyckel P, Guentsch A, Nkenke E, Stockmann P, Schlegel KA, et al. Bisphosphonate-asso- ciated osteonecrosis of the jaw is linked to suppressed TGFbeta1-signaling and increased Galectin-3 expression: a histological study on biopsies. J Transl Med, 2011. 9: p. 102. https://doi.org/10.1186/ 1479-5876-9-102 PMID: 21726429
  80. Roelofs AJ, Coxon FP, Ebetino FH, Lundy MW, Henneman ZJ, Nancollas GH, et al. Fluorescent rise- dronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res, 2010. 25(3): p. 606-16. https://doi.org/10.1359/jbmr.091009 PMID: 20422624