Students behavioural analysis in an online learning environment using data mining (original) (raw)
2014, 7th International Conference on Information and Automation for Sustainability
The focus of this research was to use Educational Data Mining (EDM) techniques to conduct a quantitative analysis of students interaction with an e-learning system through instructor-led non-graded and graded courses. This exercise is useful for establishing a guideline for a series of online short courses for them. A group of 412 students' access behaviour in an e-learning system were analysed and they were grouped into clusters using K-Means clustering method according to their course access log records. The results explained that more than 40% from the student group are passive online learners in both graded and non-graded learning environments. The result showed that the difference in the learning environments could change the online access behaviour of a student group. Clustering divided the student population into five access groups based on their course access behaviour. Among these groups, the least access group (NG-41% and G-42%) and the highest access group (NG-9% and G-5%) could be identified very clearly due to their access variation from the rest of the groups.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.