Bacterial Communities from the Arsenic Mine in Złoty Stok, Sudety Mountains, Poland (original) (raw)
Related papers
A metagenomic approach to the molecular analysis of bacterial communities in tailings of a gold mine
Gold mine operations release arsenic pollutants in environment. The present study investigated the diversity of bacterial communities in the arsenic-contaminated tailings dam effluent (TDE) of Zarshuran gold mine, Takab, northwest of Iran. The bacterial communities were examined using the next-generation sequencing method (Illumina) targeting the V3-V4 region of 16S rRNA genes. Bacteroidetes (50.3%), Proteobacteria (45.49%), Actinobacteria (1.14%) and Firmicutes (1.08%) constituted dominant phyla in the TDE. Its diversity was analyzed, and compared with that of three previously-studied arsenic-contaminated groundwater (GW) microbiomes. The raw sequencing data were analyzed in QIIME2. The prevalent taxonomic groups observed in all of the samples belonged to Proteobacteria (8.06-45.49%), Bacteroidetes (1.85-50.32%), Firmicutes (1.00-6.2%), Actinobacteria (0.86-5.09%), Planctomycetes (0.05-9.37%) and Cyanobacteria (0.6-2.71%). According to Principal Coordinates Analysis (PCoA), the TDE...
Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments
Research in Microbiology, 2011
Arsenic-resistant prokaryote diversity is far from being exhaustively explored. In this study, the arsenic-adapted prokaryotic community present in a moderately arsenic-contaminated site near Sainte-Marie-aux-Mines (France) was characterized, using metaproteomic and 16S rRNA-encoding gene amplification. High prokaryotic diversity was observed, with a majority of Proteobacteria, Acidobacteria and Bacteroidetes, and a large archaeal community comprising Euryarchaeaota and Thaumarchaeota. Metaproteomic analysis revealed that Proteobacteria, Planctomycetes and Cyanobacteria are among the active bacteria in this ecosystem. Taken together, these results highlight the unsuspected high diversity of the arsenic-adapted prokaryotic community, with some phyla never having been described in highly arsenic-exposed sites.
Polish Journal of Microbiology, 2017
Community structure of bacteria present in arsenic contaminated agricultural soil was studied with qPCR (quantitative PCR) and DGGE (Denaturing Gradient Gel Electrophoresis) as an indicator of extreme stresses. Copy number of six common bacterial taxa (Acidobacteria, Actinobacteria, α-, β- and γ-Proteobacteria, Firmicutes) was calculated using group specific primers of 16S rDNA. It revealed that soil contaminated with low concentration of arsenic was dominated by both Actinobacteria and Proteobacteria but a shift towards Proteo bacteria was observed with increasing arsenic concentration, and number of Actinobacteria eventually decreases. PCA (Principle Component Analysis) plot of bacterial community composition indicated a distinct resemblance among high arsenic content samples, while low arsenic content samples remained separated from others. Cluster analysis of soil parameters identifies three clusters, each of them was related to the arsenic content. Further, cluster analysis of ...
Biology Direct, 2012
Background Acid Mine Drainages (AMDs) are extreme environments characterized by very acid conditions and heavy metal contaminations. In these ecosystems, the bacterial diversity is considered to be low. Previous culture-independent approaches performed in the AMD of Carnoulès (France) confirmed this low species richness. However, very little is known about the cultured bacteria in this ecosystem. The aims of the study were firstly to apply novel culture methods in order to access to the largest cultured bacterial diversity, and secondly to better define the robustness of the community for 3 important functions: As(III) oxidation, cellulose degradation and cobalamine biosynthesis. Results Despite the oligotrophic and acidic conditions found in AMDs, the newly designed media covered a large range of nutrient concentrations and a pH range from 3.5 to 9.8, in order to target also non-acidophilic bacteria. These approaches generated 49 isolates representing 19 genera belonging to 4 diffe...
The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine
Environmental Pollution, 2012
The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment.
PeerJ
The microbiomes of deep and shallow aquifers located in an agricultural area, impacted by an old tin mine, were explored to understand spatial variation in microbial community structures and identify environmental factors influencing microbial distribution patterns through the analysis of 16S rRNA and aioA genes. Although Proteobacteria, Cyanobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Epsilonbacteraeota were widespread across the analyzed aquifers, the dominant taxa found in each aquifer were unique. The co-dominance of Burkholderiaceae and Gallionellaceae potentially controlled arsenic immobilization in the aquifers. Analysis of the aioA gene suggested that arsenite-oxidizing bacteria phylogenetically associated with Alpha-, Beta-, and Gamma proteobacteria were present at low abundance (0.85 to 37.13%) and were more prevalent in shallow aquifers and surface water. The concentrations of dissolved oxygen and total phosphorus significantly governed the microbiomes a...
An agar plate screening assay was used to determine whether 100 arsenic-resistant bacterial isolates, previously obtained from arsenic-contaminated soils, had the ability to transform arsenite and arsenate. Ninety-five percent of the isolates were capable of reducing arsenate on agar plates. The isolates also grew in the presence of high concentrations of arsenite, but none of the bacterial isolates oxidized arsenite to arsenate under the growth conditions tested. About 14 % (13 of 95) of the tested isolates transformed high levels of arsenate (33-70 lM) when tested using the molybdenum blue method. Partial sequence analysis of 16S rDNA genes indicated that the isolates belonged to two broad taxonomic groups: Firmicutes and Proteobacteria. Ten isolates were assigned to four species in the genus Bacillus, and three isolates belonged to two species in the genera Enterobacter and Ochrobactrum. Taken together these results indicate that phylogenetically diverse bacteria isolated from arsenic-contaminated soils in an old tin mine area in Thailand have the ability to transform arsenate to arsenite.
An agar plate screening assay was used to determine whether 100 arsenic-resistant bacterial isolates, previously obtained from arsenic-contaminated soils, had the ability to transform arsenite and arsenate. Ninety-five percent of the isolates were capable of reducing arsenate on agar plates. The isolates also grew in the presence of high concentrations of arsenite, but none of the bacterial isolates oxidized arsenite to arsenate under the growth conditions tested. About 14 % (13 of 95) of the tested isolates transformed high levels of arsenate (33-70 lM) when tested using the molybdenum blue method. Partial sequence analysis of 16S rDNA genes indicated that the isolates belonged to two broad taxonomic groups: Firmicutes and Proteobacteria. Ten isolates were assigned to four species in the genus Bacillus, and three isolates belonged to two species in the genera Enterobacter and Ochrobactrum. Taken together these results indicate that phylogenetically diverse bacteria isolated from arsenic-contaminated soils in an old tin mine area in Thailand have the ability to transform arsenate to arsenite.
Bangladesh Journal of Microbiology
Metagenomic analysis provides in-depth understanding of microbe mediated Arsenic (As) metabolism. The present study aims atmetagenomic analysis of the distribution, diversity, and abundance of bacteriome in arsenic affected groundwater and surrounding soils collected fromBogra district of Bangladesh. Metagenomic DNA was extracted from two groundwater samples BCW3 andBCW4 (As content10μgL-1 and 500 μgL-1, respectively), and two tube-well surrounding soil samples BSS1 and BCS5 (As content335 μgkg-1 and 492 μgkg-1),where As rich water flows off. Metagenomic analysis of six hypervariable regions of 16S rRNA gene resulted in a total of 788709 processed sequence reads and 5878 operational taxonomic units (OTUs). Bacterial richness, abundance and diversity (alpha and beta) were higher in BCW4 (85 genera) than BCW3 (19 genera) whereas both soil samples exhibited almost similar richness and diversity. Predominant genera in BCW3 were Pseudomonas, Microbacterium, Achromobacterwhereas Acinetoba...