Restoration of A Healthy Intestinal Microbiota Normalizes Portal Hypertension In A Rat Model of Nonalcoholic Steatohepatitis (original) (raw)

Potential mechanisms linking gut microbiota and portal hypertension

Liver International, 2018

Gut microbiota is the largest collection of commensal microorganisms in the human body, engaged in reciprocal cellular and molecular interactions with the liver. This mutually beneficial relationship may break down and result in dysbiosis, associated with disease phenotypes. Altered composition and function of gut microbiota has been implicated in the pathobiology of nonalcoholic fatty liver disease (NAFLD), a prevalent condition linked to obesity, insulin resistance and endothelial dysfunction. NAFLD may progress to cirrhosis and portal hypertension, which is the result of increased intrahepatic vascular resistance and altered splanchnic circulation. Gut microbiota may contribute to rising portal pressure from the earliest stages of NAFLD, although the significance of these changes remains unclear. NAFLD has been linked to lower microbial diversity and weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defence and inflammation. Moreover, disrupted host-microbial metabolic interplay alters bile acid signalling and the release of vasoregulatory gasotransmitters. These perturbations become prominent in cirrhosis, increasing the risk of clinically significant portal hypertension and leading to bacterial translocation, sepsis and acute-on-chronic liver failure. Better understanding of the gut-liver axis and identification of novel microbial molecular targets may yield specific strategies in the prevention and management of portal hypertension.

Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis

European journal of nutrition, 2017

Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut-liver axis. The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)-endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in ...

Fecal Microbiota Transplant from Human to Mice Gives Insights into the Role of the Gut Microbiota in Non-Alcoholic Fatty Liver Disease (NAFLD)

Microorganisms, 2021

Non-alcoholic fatty liver diseases (NAFLD) are associated with changes in the composition and metabolic activities of the gut microbiota. However, the causal role played by the gut microbiota in individual susceptibility to NAFLD and particularly at its early stage is still unclear. In this context, we transplanted the microbiota from a patient with fatty liver (NAFL) and from a healthy individual to two groups of mice. We first showed that the microbiota composition in recipient mice resembled the microbiota composition of their respective human donor. Following administration of a high-fructose, high-fat diet, mice that received the human NAFL microbiota (NAFLR) gained more weight and had a higher liver triglycerides level and higher plasma LDL cholesterol than mice that received the human healthy microbiota (HR). Metabolomic analyses revealed that it was associated with lower and higher plasma levels of glycine and 3-Indolepropionic acid in NAFLR mice, respectively. Moreover, sev...

a section of the journal Frontiers in Physiology Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease

Obesity and associated comorbidities, including non-alcoholic fatty liver disease (NAFLD), are a major concern to public well-being worldwide due to their high prevalence among the population, and its tendency on the rise point to as important threats in the future. Therapeutic approaches for obesity-associated disorders have been circumscribed to lifestyle modifications and pharmacological therapies have demonstrated limited efficacy. Over the last few years, different studies have shown a significant role of intestinal microbiota (IM) on obesity establishment and NAFLD development. Therefore, modulation of IM emerges as a promising therapeutic strategy for obesity-associated diseases. Administration of prebiotic and probiotic compounds, fecal microbiota transplantation (FMT) and exercise protocols have shown a modulatory action over the IM. In this review we provide an overview of current approaches targeting IM which have shown their capacity to counteract NAFLD and metabolic syndrome features in human patients and animal models.

Gut Microbiota: The Missing Link in Obesity Induced Nonalcoholic Liver Disease

Background and objective: Recent research has elucidated a close association between intestinal microbiota, obesity, insulin resistance and nonalcoholic hepatic injury. Various studies have also indicated an increase in hepatic marker enzymes in obesity. Hence, this study aims to evaluate the association of gut microbiota with obesity, insulin resistance and hepatic marker enzymes. Material and Method: This case-control study was conducted during March 2015 to October 2016 At S.C.B Medical College, Cuttack, Odisha. The study included 186 subjects (86 irritable bowel syndrome patients as per the Rome III criteria and hundred matched controls). Plasma fasting glucose, serum lipid profile, hepatic marker enzymes were analysed by commercial kits adapted to automated clinical chemistry analyser and serum fasting insulin was estimated by kits adapted to Lisa Scan. Observation: Compared to controls the Irritable bowel syndrome patients had significantly higher Body mass index (20.9± 5.6 vs 30.1±0.22), Waist-hip ratio (0.9 ± 0.11 vs 1.02 ± 0.06), lipid profile, hepatic marker enzymes and insulin resistance. Conclusion: IBS patients were obese, and exhibited dyslipidemia, insulin resistance, elevated hepatic enzymes suggesting development of NAFLD.

Gut microbiome and nonalcoholic fatty liver diseases

Pediatric Research, 2014

Review nature publishing group We review recent findings and hypotheses on the roles of gut microbiome in the pathogenesis of nonalcoholic fatty liver diseases (NAFLD). Microbial metabolites and cell components contribute to the development of hepatic steatosis and inflammation, key components of nonalcoholic steatohepatitis (NASH), the severe form of NAFLD. Altered gut microbiome can independently cause obesity, the most important risk factor for NAFLD. This capability is attributed to short-chain fatty acids (SCFAs), major gut microbial fermentation products. SCFAs account for a large portion of caloric intake of the host, and they enhance intestinal absorption by activating GLP-2 signaling. However, elevated SCFAs may be an adaptive measure to suppress colitis, which could be a higher priority than imbalanced calorie intake. The microbiome of NASH patients features an elevated capacity for alcohol production. The pathomechanisms for alcoholic steatohepatitis may apply to NASH. NAFLD/ NASH is associated with elevated Gram-negative microbiome and endotoxemia. However, many NASH patients exhibited normal serum endotoxin indicating that endotoxemia is not required for the pathogenesis of NASH. These observations suggest that microbial intervention may benefit NAFLD/NASH patients. However, very limited effects were observed using traditional probiotic species. Novel probiotic therapy based on NAFLD/NASH specific microbial composition represents a promising future direction.

The role of the gut microbiota in nonalcoholic fatty liver disease

Nature Reviews Gastroenterology & Hepatology, 2010

Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Its prevalence increases with increasing rates of obesity, insulin resistance, and diabetes mellitus. The pathogenesis of NAFLD involves many factors, including the gastrointestinal microbiota. However, there is still debate about the impact of gut dysbiosis in the NAFLD disease progression. Therefore, this paper aims to review the relationship between gut microbiota and other risk factors for NAFLD and how gut dysbiosis plays a role in the pathogenesis of NAFLD. Hopefully, this paper can make an appropriate contribution to the development of NAFLD research in the future.

Gut–liver axis: The impact of gut microbiota on non alcoholic fatty liver disease

Nutrition, Metabolism and Cardiovascular Diseases, 2012

Aim: To examine the impact of gut microbiota on non alcoholic fatty liver disease (NAFLD) pathogenesis. Data synthesis: Emerging evidence suggests a strong interaction between gut microbiota and liver. Receiving approximately 70% of its blood supply from the intestine, the liver represents the first line of defence against gut-derived antigens. Intestinal bacteria play a key role in the maintenance of guteliver axis health. Disturbances in the homeostasis between bacteria-and host-derived signals at the epithelial level lead to a break in intestinal barrier function and may foster "bacterial translocation", defined as the migration of bacteria or bacterial products from the intestinal lumen to mesenteric lymph nodes or other extraintestinal organs and sites. While the full repertoire of gut-derived microbial products that reach the liver in health and disease has yet to be explored, the levels of bacterial lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver diseases. Derangement of the gut flora, particularly small intestinal bacterial overgrowth, occurs in a large percentage (20e75%) of patients with chronic liver disease. In addition, evidence implicating the guteliver axis in the pathogenesis of metabolic liver disorders has accumulated over the past ten years. Conclusions: Complex metabolic diseases are the product of multiple perturbations under the influence of triggering factors such as gut microbiota and diet, thus, modulation of the gut microbiota may represent a new way to treat or prevent NAFLD. ª

Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease.

Obesity and associated comorbidities, including non-alcoholic fatty liver disease (NAFLD), are a major concern to public well-being worldwide due to their high prevalence among the population, and its tendency on the rise point to as important threats in the future. Therapeutic approaches for obesity-associated disorders have been circumscribed to lifestyle modifications and pharmacological therapies have demonstrated limited efficacy. Over the last few years, different studies have shown a significant role of intestinal microbiota (IM) on obesity establishment and NAFLD development. Therefore, modulation of IM emerges as a promising therapeutic strategy for obesity-associated diseases. Administration of prebiotic and probiotic compounds, fecal microbiota transplantation (FMT) and exercise protocols have shown a modulatory action over the IM. In this review we provide an overview of current approaches targeting IM which have shown their capacity to counteract NAFLD and metabolic syndrome features in human patients and animal models.