Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix (original) (raw)

Abstract

sparkles

AI

This study explores the synthesis and characterization of nanoscale cobalt clusters within a silica matrix through high energy implantation of cobalt ions. Utilizing Raman spectroscopy, the research identifies surface acoustic symmetrical vibrational modes, which are significantly influenced by excitation wavelengths. X-ray diffraction confirms the presence of a face-centered-cubic phase in cobalt clusters after postannealing, which also promotes cluster growth. This work highlights the unique structural and vibrational properties of cobalt nanoclusters and their potential applications in advanced materials.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (26)

  1. R. C. Ashoori, Nature ͑London͒ 379, 413 ͑1996͒.
  2. A. Paul Alivisatos, Nat. Biotechnol. 22, 47 ͑2004͒.
  3. A. T. Bell, Science 299, 1688 ͑2003͒.
  4. A. Paul Alivisatos, Science 271, 933 ͑1996͒.
  5. G. Carotenuto, G. P. Pepe, and L. Nicolais, Eur. Phys. J. B 16, 11 ͑2000͒.
  6. V. F. Puntes, K. M. Krishnan, and A. Paul Alivisatos, Science 291, 2115 ͑2001͒.
  7. L. G. Jacobsohn, M. E. Hawley, D. W. Cooke, M. F. Hundley, J. D. Thompson, R. K. Schulze, and M. Nastasi, J. Appl. Phys. 96, 4444 ͑2004͒.
  8. O. Cintora-Gonzalez, D. Muller, C. Estournes, M. Richard-Plouet, R. Poinsot, J. J. Grob, and J. Guille, Nucl. Instrum. Methods Phys. Res. B 178, 144 ͑2001͒.
  9. K. Fukumi, A. Chayahara, K. Kadono, H. Kageyama, T. Akai, H. Mizoguchi, N. Kitamura, M. Makihara, Y. Horino, and K. Fujii, J. Mater. Res. 16, 155 ͑2001͒.
  10. JCPDS Card No. 15-0806 ͑unpublished͒.
  11. H. Lamb, Proc. London Math. Soc. 13, 187 ͑1882͒.
  12. E. Duval, Phys. Rev. B 46, 5795 ͑1992͒.
  13. P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, J. Appl. Phys. 88, 4975 ͑2000͒.
  14. B. Palpant, H. Portales, L. Saviot, J. Lermé, B. Prével, M. Pellarin, E. Duval, A. Perez, and M. Broyer, Phys. Rev. B 60, 17107 ͑1999͒.
  15. J. I. Gersten, D. A. Weitz, T. J. Gramila, and A. Z. Genack, Phys. Rev. B 22, 4562 ͑1980͒.
  16. H. Portales, L. Saviot, E. Duval, M. Fujii, S. Hayashi, N. Del Fatti, and F. Vallée, J. Chem. Phys. 115, 3444 ͑2001͒.
  17. A. Courty, I. Lisiecki, and M. Pileni, J. Chem. Phys. 116, 8074 ͑2002͒.
  18. G. Bachelier and A. Mlayah, Phys. Rev. B 69, 205408 ͑2004͒.
  19. A. Tamura, K. Higeta, and T. Ichinokawa, J. Phys. C 15, 4975 ͑1982͒.
  20. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calcu- lated Aggregate Properties: A Handbook, 2nd ed. ͑MIT, Cambridge, 1971͒, p. 316.
  21. Calculated ratio of quadrupolar ͑l =2͒ mode frequency to radial ͑l =0͒ mode frequency works out to be 0.57 for the same size of cobalt nano- clusters. This implies that the l = 2 mode should have appeared around 18 cm -1 in the Raman spectra for the sample implanted with 2 ϫ 10 16 ions cm -2 . Absence of any such features in the spectra ͑see Fig. 4͒ further confirms that radial modes are only observed.
  22. R. Pretorius, J. M. Harris, and M.-A. Nicolet, Solid-State Electron. 21, 667 ͑1978͒.
  23. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 ͑1961͒.
  24. C. Wagner, Z. Elektrochem. 65, 581 ͑1961͒.
  25. FIG.
  26. Display of polarized Raman spectra of embedded Co nanoclusters in the silica glass matrix. The symbols are the data; solid line is the fit to the experimental data with Lorentzian line shape function and the background.