The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways (original) (raw)
2010, Journal of Cell Science
A paradigm-changing discovery in biology came about when it was found that nuclear and cytosolic proteins could be dynamically glycosylated with a single O-linked b-N-acetylglucosamine (O-GlcNAc) moiety. O-GlcNAcylation is akin to phosphorylation: it occurs on serine and/or threonine side chains of proteins, and cycles rapidly upon cellular activation. O-GlcNAc and phosphate show a complex interplay: they can either competitively occupy a single site or proximal sites, or noncompetitively occupy different sites on a substrate. Phosphorylation regulates O-GlcNAc-cycling enzymes and, conversely, O-GlcNAcylation controls phosphate-cycling enzymes. Such crosstalk is evident in all compartments of the cell, a finding that is congruent with the fundamental role of O-GlcNAc in regulating nutrient-and stress-induced signal transduction. O-GlcNAc transferase is recruited to the plasma membrane in response to insulin and is targeted to substrates by forming transient holoenzyme complexes that have different specificities. Cytosolic O-GlcNAcylation is important for the proper transduction of signaling cascades such as the NFkB pathway, whereas nuclear O-GlcNAc is crucial for regulating the activity of numerous transcription factors. This Commentary focuses on recent findings supporting an emerging concept that continuous crosstalk between phosphorylation and O-GlcNAcylation is essential for the control of vital cellular processes and for understanding the mechanisms that underlie certain neuropathologies.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.