Long Term Structural Dynamics of Mechanical Systems With Local Nonlinearities (original) (raw)
Related papers
Dynamic Response of Non-linear Beam Structures in Deterministic and Chaos Perspective
Indonesian Journal of Physics, 2019
The behavior of large deformation beam structures can be modeled based on non-linear geometry due to geometricnonlinearity mid-plane stretching in the presence of axial forces, which is a form a nonlinear beam differential equationof Duffing equation type. Identification of dynamic systems from nonlinear beam differential equations fordeterministic and chaotic responses based on time history, phase plane and Poincare mapping. Chaotic response basedon time history is very sensitive to initial conditions, where small changes to initial terms leads to significant change inthe system, which in this case are displacement x (t) and velocity x’(t) as time increases (t). Based on the phase plane, itshows irregular and non-stationary trajectories, this can also be seen in Poincare mapping which shows strange attractorand produces a fractal pattern. The solution to this Duffing type equation uses the Runge-Kutta numerical method withMAPLE software application.
Chaos, Solitons & Fractals, 2005
The nonlinear analysis of a common beam system was performed, and the method for such, outlined and presented. Nonlinear terms for the governing dynamic equations were extracted and the behaviour of the system was investigated. The analysis was carried out with and without physically realistic parameters, to show the characteristics of the system, and the physically realistic responses. Also, the response as part of a more complex system was considered, in order to investigate the cumulative effects of nonlinearities.Chaos, as well as periodic motion was found readily for the physically unrealistic parameters. In addition, nonlinear behaviour such as co-existence of attractors was found even at modest oscillation levels during investigations with realistic parameters. When considered as part of a more complex system with further nonlinearities, comparisons with linear beam theory show the classical approach to be lacking in accuracy of qualitative predictions, even at weak oscillations.