Scientific Community Image Forum: A discussion forum for scientific image software (original) (raw)
Related papers
Biological imaging software tools
Nature Methods, 2012
Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis, and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the challenges in that domain, and the overall status of available software for bioimage informatics, focusing on open source options.
The ImageJ ecosystem: An open platform for biomedical image analysis
Molecular Reproduction and Development, 2015
Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is availableÀ Àfrom commercial to academic, special-purpose to Swiss army knife, small to largeÀ Àbut a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the opensoftware platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is selfinfluenced by coevolving projects within the ImageJ ecosystem.
BioImageIT: Open-source framework for integration of image data-management with analysis
2021
Open science and FAIR principles have become major topics in the field of bioimaging. This is due to both new data acquisition technologies that generate large datasets, and new analysis approaches that automate data mining with high accuracy. Nevertheless, data are rarely shared and rigorously annotated because it requires a lot of manual and tedious management tasks and software packaging. We present BioImageIT, an open-source framework for integrating data management according to FAIR principles with data processing.
The Image Data Resource: A Bioimage Data Integration and Publication Platform
Nature methods, 2017
Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR) that collects and integrates imaging data acquired across many different imaging modalities. IDR links data from several imaging modalities, including high-content screening, super-resolution and time-lapse microscopy, digital pathology, public genetic or chemical databases, and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable re-analysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open source platform that others can use to publish their own image data. Thus IDR provides both a novel on-line resource and a software infrastructure that promot...
ImageJ2: ImageJ for the next generation of scientific image data
BMC bioinformatics, 2017
ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing community while addressing a wider range of scientific requirements. This next-generat...
The NEUBIAS Gateway: a hub for bioimage analysis methods and materials
F1000Research
We introduce the NEUBIAS Gateway, a new platform for publishing materials related to bioimage analysis, an interdisciplinary field bridging computer science and life sciences. This emerging field has been lacking a central place to share the efforts of the growing group of scientists addressing biological questions using image data. The Gateway welcomes a wide range of publication formats including articles, reviews, reports and training materials. We hope the Gateway further supports this important field to grow and helps more biologists and computational scientists learn about and contribute to these efforts.