Maillard neoglycans as inhibitors for in vitro adhesion of F4+ enterotoxigenic Escherichia coli to piglet intestinal cells (original) (raw)
Related papers
Food Chemistry, 2013
Enterotoxigenic (ETEC) Escherichia coli (E. coli) causes traveller's diarrhoea and high mortality among baby animals. ETEC adhesion is mediated by lectins (adhesins) that bind to glycoconjugates on the surface of host cells. Glycans that compete for adhesion could be used for disease prevention. Neoglycans of porcine albumin (PSA) that were conjugated with prebiotic galactooligosaccharides (GOS) were synthesised using the Maillard reaction. PSA glycation was confirmed by a reduction in the number of available free amino groups, decreased tryptophan intrinsic fluorescence, increased molecular mass and Ricinus communis lectin recognition. The adhesion of four ETEC strains (E. coli H10407, CFA + , K99 and K88) to PSA-GOS was examined by an enzyme-linked lectin assay. E. coli K88 bound to PSA-GOS with greater affinity (P < 0.05) than did E. coli H10407, CFA + and K99. In addition, PSA-GOS partially inhibited the adherence of the K88 strain to intestinal mucins. Pig ETEC strain was unable to ferment galactooligosaccharide-neoglycans. These results suggest that neoglycans obtained by the Maillard reaction may serve in the prophylaxis of ETEC K88 diarrhoea.
Pediatric Research, 2015
Basic Science Investigation nature publishing group Background: Breast-fed infants have a lower incidence of acute gastroenteritis due to the presence of several anti-infective factors in human milk. The aim of this work is to study the capacity of human milk glycosaminoglycans (GAGs) to inhibit the adhesion of some common pathogenic bacteria. Methods: GAGs were isolated from a pool of milk samples collected from different mothers during the first month of lactation. Experiments were carried out to study the ability of GAGs to inhibit the adhesion of two intestinal microorganisms (enteropathogenic Escherichia coli serotype 0119 and Salmonella fyris) to Caco-2 and Int-407 cell lines. results: The study showed that the GAGs had an anti-adhesive effect on the two pathogenic strains studied with different degrees of inhibition. In particular, in the presence of human milk GAGs, the adhesion of S. fyris to Caco-2 cells and to Int-407 cells of both tested strains was significantly reduced. conclusion: Our results demonstrated that GAGs in human milk can be one of the important defensive factors against acute diarrheal infections in breast-fed infants.
Pediatric Research, 2006
Breast-fed children, compared with the bottle-fed ones, have a lower incidence of acute gastroenteritis due to the presence of several antiinfective factors in human milk. The aim of this work is to study the ability of human milk oligosaccharides to prevent infections related to some common pathogenic bacteria. Oligosaccharides of human milk were fractionated by gel-filtration and characterized by thin-layer chromatography and highperformance anion exchange chromatography. Fractions obtained contained, respectively, 1) acidic oligosaccharides, 2) neutral highmolecular-weight oligosaccharides, and 3) neutral low-molecularweight oligosaccharides. Experiments were carried out to study the ability of oligosaccharides in inhibiting the adhesion of three intestinal microorganisms (enteropathogenic Escherichia coli serotype O119, Vibrio cholerae, and Salmonella fyris) to differentiated Caco-2 cells. The study showed that the acidic fraction had an antiadhesive effect on the all three pathogenic strains studied (with different degrees of inhibition). The neutral high-molecular-weight fraction significantly inhibited the adhesion of E. coli O119 and V. cholerae, but not that of S. fyris; the neutral low-molecular-weight fraction was effective toward E. coli O119 and S. fyris but not V. cholerae. Our results demonstrate that human milk oligosaccharides inhibit the adhesion to epithelial cells not only of common pathogens like E. coli but also for the first time of other aggressive bacteria as V. cholerae and S. fyris. Consequently, oligosaccharides are one of the important defensive factors contained in human milk against acute diarrheal infections of breast-fed infants.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in piglets; ETEC cells colonize the intestinal mucosa with adhesins and deliver toxins that cause fluid loss. This study determined the antiadhesive properties of bacterial exopolysaccharides (reuteran and levan) and related glycans (dextran and inulin) in a small intestinal segment perfusion (SISP) model. The SISP model used 10 jejunal segments from 5-week-old piglets. Five segments were infected with ETEC expressing K88 fimbriae (ETEC K88), while five segments were treated with saline. Every two segments (ETEC and non-ETEC infected) were infused with 65 ml of 10 g liter ؊1 of glycans or saline (control) for 8 h. High-resolution melting-curve (HRM) quantitative PCR (qPCR) indicated that E. coli is the dominant bacterium in infected segments, while other bacteria were predominant in noninfected segments. Infection by ETEC K88 was also verified by qPCR; gene copy numbers of K88 fimbriae and the heat-labile toxin (LT) in mucosal scrapings and outflow fluid of infected segments were significantly higher than those in noninfected segments. Genes coding for K88 fimbriae and LT were also detected in noninfected segments. LT amplicons from infected and noninfected segments were 99% identical over 481 bp, demonstrating the presence of autochthonous ETEC K88. All glycans reduced fluid loss caused by ETEC K88 infection. Reuteran tended (P ؍ 0.06) to decrease ETEC K88 levels in mucosal scraping sample, as judged by qPCR. Fluorescent in situ hybridization analysis demonstrated that reuteran significantly (P ؍ 0.012) decreased levels of adherent ETEC K88. Overall, reuteran may prevent piglet diarrhea by reducing adhesion of ETEC K88.
Biochimie, 2012
Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. It produces a characteristic intestinal histopathological lesion on enterocytes known as 'attaching and effacing' (A/E), and these two steps are mediated by a type-III secretory system. In the present study, we evaluated the effect on the initial host cell attachment step produced by bovine lactoferrin (bLF) and three synthetic peptides: lactoferricin (LFcin), lactoferrampin (LFampin) and LFchimera. A special focus was given to the hemolytic activity and EPEC-induced actin polymerization in HEp-2 cells, as well as to the espA gene expression, which produces the protein responsible for primary contact with the host cells. Results show that EPEC attachment to HEp-2 cells was significantly suppressed by bLF and LFchimera at 125 and 40 mM, respectively. EPEC-mediated actin polymerization was blocked by bLF and LFchimera at 88 and 99%, respectively. LFchimera inhibited the attachment and A/E lesion caused by EPEC in a dosedependent manner. In the presence of 125 mM bLF, the expression level of the espA gene was decreased by 50% compared to the untreated control. LFchimera at concentrations of 20 mM and 40 mM diminished the level of espA gene expression 100 and 1000 fold, respectively (P < 0.001). Although bLF, LFchimera, LFcin, and LFampin all significantly blocked the hemolysis produced by EPEC (P < 0.001), the two former compounds produced this effect at lower concentrations. These two compounds, bLF and LFchimera, were able to inhibit the first steps of the mechanism of the damage used by EPEC. This data suggests that LFchimera could provide protection against enteropathogens that share this mechanism.
Journal of Veterinary Medical Science, 2000
Composition of glycoconjugates were investigated in Escherichia coli 09:K103:NM, 987P + ST +-infected lower small intestines of 1-week-old pigs by the use of twenty one biotinylated-labelled lectins with avidin-biotin-peroxidase complex method. Piglets with experimental group were inoculated by feeding 5 ml of culture inoculum (5 × 10 9 colony-forming units/ml) with 15 ml of milk replacer. At the onset of diarrhea, experimental piglets and time-matched control piglets were euthanatized using electrocution, necropsied, and tested by lectin histochemistry. As compared with control, staining intensity of seven lectins altered in ileal villus brush border and goblet cells of pigs inoculated with the pathogen.
Poultry Science, 2008
Salmonella enterica serovar Enteritidis is the major zoonotic and intracellular pathogen. Different strategies have been developed to prevent the S. Enteritidis infection. The β-1,3-1,6-glucan of Schizophyllum commune was used as an immunological booster to determine the minimal dietary level of β-glucan that would restrict S. Enteritidis infection through the effects of β-glucan on the activity of macrophages and direct physical protection of the intestine. One-day-old male Single Comb White Leghorn chicks were used in all trials. In trials 1 and 2, the 0.1% β-1,3-1,6-glucan treatment completely eliminated the viable S. Enteritidis from spleen and liver in an oral challenge of 10 8 S. Enteritidis without any harmful effect on BW, serum proteins, and immunoglobulin. Instead of a 21-d feeding period of β-glucan, a 14-d treatment was enough to eliminate the S. Enteritidis in spleen and liver. In trial 3, an increase in the relative weight of bursa of Fabricius and phytohemagglutinin-P-inducing cutaneous basophil hypersensitivity was observed (P < 0.05). In trials 2, 3, and 4, the direct or indirect effect of β-1,3-1,6-glucan on abdominal macrophages was examined. Sterilized 3% Sephadex G-50 was injected to induce abdominal (peritoneal) phagocytes in chicks fed with or without 0.1% β-1,3-1,6-glucan. Significantly increased phagocytic and bactericidal capability to S. Enteritidis was found in abdominal macrophages either pretreated or in vitro treated with 0.1% β-1,3-1,6-glucan. In conclusion, in addition to the physical properties to block S. Enteritidis entrance, 0.1% dietary β-1,3-1,6-glucan may enhance the host defense to S. Enteritidis by directly upregulating the phagocytosis and bactericidal activity of abdominal macrophages in chicks.
Glycoconjugate Journal, 2002
Milk oligosaccharides have been proposed to play an important role in newborn defense, blocking bacterial adhesion to the intestinal mucosa and preventing infections. Some studies have been performed on human milk oligosaccharides. Here we checked whether bovine milk oligosaccharides would achieve the same protective action against the most common calf enteric pathogens. Seven enterotoxigenic Escherichia coli strains, isolated from diarrheic calves, were selected. All strains managed to agglutinate horse erythrocytes, and we therefore used the inhibition of hemagglutination in the presence of oligosaccharides as an indicator of the union between oligosaccharide and bacterial adhesins. Oligosaccharides from different stages of bovine lactation and standard oligosaccharides were assayed. Midlactation milk, in particular that corresponding to the transition period, proved to be the most efficient at inhibiting hemagglutination. The standard oligosaccharides used pointed to the preferen...
Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose
Acta biochimica Polonica, 2011
Recently, glyco-therapy is proposed to prevent the interaction of bacterial lectins with host ligands (glycoconjugates). This interaction represents the first step in infection. Neoglycans referred to as PSA-Lac (PSA-Glu (β1-4) Gal) were obtained by conjugation of porcine serum albumin (PSA) with lactose at 80 °C, 100 °C and 120 ºC. Characterization studies of the products showed that PSA could contain 1, 38 or 41 added lactoses, depending on the reaction temperature. These neoglycans were approximately 10 times more glycated than PSA-Lac obtained in previous work. Lactose conjugation occurred only at lysines and PSA-Lac contained terminal galactoses as confirmed by Ricinus communis lectin recognition. Furthermore, Escherichia coli K88+, K88ab, K88ac and K88ad adhesins showed affinity toward all PSA-Lac neoglycans, and the most effective was the PSA-Lac obtained after 100 ºC treatment. In vitro, this neoglycan partially inhibited the adhesion of E. coli K88+ to piglet mucin (its nat...
Brazilian Journal of Microbiology, 2007
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of diarrhea in children in developing countries and among travelers to ETEC endemic areas. ETEC diarrhea is caused by colonization of the small intestine mediated by colonization factor (CF) antigens, and subsequent elaboration of enterotoxins. Breast feeding has been related to protection against enteric infections. The protective effect of human milk can be ascribed to its immunoglobulin content, specially secretory immunoglobulin A (sIgA), and to nonimmunoglobulin components such as free oligosaccharides, glycoproteins and glycolipids. In this study we investigated the effect of whole human milk and its fractions immunoglobulin and non-immunoglobulin on the adherence of ETEC strains possessing different CFs to Caco-2 cells, as well as the ability of sIgA and free secretory component (fSC) to bind to bacterial superficial proteins. Pooled human milk from three donors were fractionated by gel filtration and analyzed by SDS-PAGE. Our results revealed that whole human milk and its proteins fractions, containing sIgA and fSC, inhibited adhesion ETEC strains harboring different colonization factors antigens. We also verified that sIgA and fSC, using immunoblotting and immunogold labeling assays, bound to some fimbrial proteins and other material present in bacterial surface. Our findings suggest that whole human milk and its fractions may contribute to protection against ETEC infections by blocking bacterial adhesion mediated by different colonization antigens.