Effect of Viscosity, Surfactant Type and Concentration on Physicochemical Properties of Solid Lipid Nanoparticles (original) (raw)

2015, International Journal of Pharmacy and Pharmaceutical Sciences

The aim of the current work was to look into the feasibility of planning of solid lipid nanoparticles of Glyceryl mono stearate containing Dibenzoyl peroxide, Erythromycin base, and Triamcinolone acetonide as model drugs. Methods: Solid lipid nanoparticles loaded with three model lipophilic drugs were developed by high shear hot homogenization method. The model drugs used are Dibenzoyl peroxide, Erythromycin base, and Triamcinolone acetonide. Glyceryl monostearate was used as the lipid core; Tween 20 and Tween 80 were employed as surfactants and lecithin asco-surfactant. Many formulation parameters were manipulated to receive high quality nanoparticles. The prepared solid lipid nanoparticles were evaluated by different standardphysical and imaging methods. The efficiency of drug release form prepared formulaewas studied using In vitro technique to utilize of dialysis bag technique. The stability of prepared formulae was studied by thermal procedures and infrared spectrum analysis. The physicochemical properties of the prepared formulae like particle size, drug entrapment efficiency, drug loading capacity, yield content and In vitro drug release behavior were too assessed. Results: The average particle diameter measured by a laser diffraction technique was (194.6±5.03 to 406.6±15.2 NM) for Dibenzoyl peroxide loaded solid lipid nanoparticles, (220±6.2 to 328.34±2.5) NM for Erythromycin loaded solid lipid nanoparticles and (227.3±2.5 to 480.6±24) NM for Triamcinolone acetonide loaded solid lipid nanoparticles. The entrapment efficiency and drug loading capacity, determined with ultravioletspectroscopy, were 80.5±9.45% and 0.805±0.093%, for Dibenzoyl peroxide, 96±11.5 and0.96±0.012 for Triamcinolone acetonide and 94.6±14.9 and 0.946±0.012 for Erythromycinbase respectively. It was found that model drugs showed significant faster release patterns when compared with commercially available formulations and pure drugs(p˂0. 05). Thermal analysis of prepared solid lipid nanoparticles gave indication ofsolubilization of drugs within a lipid matrix. Fourier Transform Infrared Spectroscopy (FTIR) showed the absence of new bands for loaded solid lipid nanoparticles indicating nointeraction between drugs and lipid matrix and being only dissolved in it. Electronmicroscope of scanning and transmission techniques indicated sphere form of preparedsolid lipid nanoparticles with smooth surface with size below 100 nm. Conclusion: In conclusion, it may be concluded that solid lipid nanoparticles with small particle size have high encapsulation efficiency, and relatively high loading capacity for Dibenzoyl peroxide, Erythromycin base, and Triamcinolone acetonide as model drugs can be obtained by this method.