A three dimensional contact model for soil-pipe interaction (original) (raw)

2007, Journal of Mechanics of Materials and Structures

One of the most common causes of collapse of pipelines crossing unstable slopes is the large deformation induced by landslides. This paper presents a numerical methodology based on the finite element method for the analysis of buried pipelines considering the nonlinear behavior of the soil-pipe interface. This problem is inherently complex since it involves the interaction between two different bodies (pipe and soil), and is affected by many elements such as material nonlinearities, local and global buckling, soil settlement, pipe upheaval, among others. An important aspect that should be considered in the study of buried pipes is the mechanical behavior along the interface between the structure and the soil. The contact problem, which includes both a normal and a tangential constitutive law, is formulated through a penalty method. The finite element model considers full three-dimensional geometry, elasto-plastic material behavior and accounts for the presence of large displacements and deformations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.