Nanosecond electric pulses penetrate the nucleus and enhance speckle formation (original) (raw)


Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn ...

Although the formation of RNA-protein bodies has been studied intensively, their mobility and how their number and size are regulated are still poorly understood. Here, we show significant increased mobility of nuclear speckles after transcriptional inhibition, including long-range directed motion of one speckle towards another speckle, terminated by speckle fusion, over distances up to 4 um and with velocities between 0.2-1.5 μm/min. Frequently, 3 or even 4 speckles follow very similar paths, with new speckles appearing along the path followed by a preceding speckle. Speckle movements and fusion events contribute to fewer but larger speckles after transcriptional inhibition. These speckle movements are not actin-dependent, but occur within chromatin-depleted channels enriched with small granules containing the speckle-marker protein SON. Our observations suggest a mechanism for long-range, directed nuclear speckle movements, contributing to overall regulation of nuclear speckle num...

A significant fraction of active chromosome regions and genes reproducibly position near nuclear speckles, but the functional significance of this positioning is unknown. Here we show that Hsp70 BAC transgenes and endogenous genes turn on 2-4 mins after heat shock irrespective of their distance to nuclear speckles. However, we observe 12-56-fold and 3-7-fold higher transcription levels for speckle-associated Hsp70 transgenes and endogenous genes, respectively, after 1-2 hrs heat shock. Several fold higher transcription levels for several genes flanking the Hsp70 locus also correlate with speckle-association at 37 °C. Live-cell imaging reveals this modulation of Hsp70 transcription temporally correlates with speckle association/disassociation. Our results demonstrate stochastic gene expression dependent on positioning relative to a liquid-droplet nuclear compartment through a “transcriptional amplification” mechanism distinct from transcriptional bursting.

The cellular response to subtle membrane damage following exposure to nanosecond electric pulses (nsEP) is not well understood. Recent work has shown that when cells are exposed to nsEP, ion permeable nanopores (< 2nm) are created in the plasma membrane in contrast to larger diameter pores (> 2nm) created by longer micro and millisecond duration pulses. Macroscopic damage to a plasma membrane by a micropipette has been shown to cause internal vesicles (lysosomes) to undergo exocytosis to repair membrane damage, a calcium mediated process called lysosomal exocytosis. Formation of large pores in the plasma membrane by electrical pulses has been shown to elicit lysosomal exocytosis in a variety of cell types. Our research objective is to determine whether lysosomal exocytosis will occur in response to nanopores formed by exposure to nsEP. In this paper we used propidium iodide (PI) and Calcium Green-1 AM ester (CaGr) to differentiate between large and small pores formed in CHO-K1 cells following exposure to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm. This information was compared to changes in membrane organization observed by increases in FM1-43 fluorescence, both in the presence and absence of calcium ions in the outside buffer. In addition, we monitored the real time migration of lysosomes within the cell using Cellular Lights assay to tag LAMP-1, a lysosomal membrane protein. Both 1 and 20 pulses elicited a large influx of extracellular calcium, while little PI uptake was observed following a single pulse exposure. Statistically significant increases in FM1-43 fluorescence were seen in samples containing calcium suggesting that calcium-triggered membrane repair may be occurring. Lastly, density of lysosomes within cells, specifically around the nucleus, appeared to change rapidly upon nsEP stimulation suggesting lysosomal migration.