Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance (original) (raw)

The Interactions of Insulin and Vitamin A Signaling Systems for the Regulation of Hepatic Glucose and Lipid Metabolism

Cells

The pandemics of obesity and type 2 diabetes have become a concern of public health. Nutrition plays a key role in these concerns. Insulin as an anabolic hormonal was discovered exactly 100 years ago due to its activity in controlling blood glucose level. Vitamin A (VA), a lipophilic micronutrient, has been shown to regulate glucose and fat metabolism. VA’s physiological roles are mainly mediated by its metabolite, retinoic acid (RA), which activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are two transcription factors. The VA status and activations of RARs and RXRs by RA and synthetic agonists have shown to affect the glucose and lipid metabolism in animal models. Both insulin and RA signaling systems regulate the expression levels of genes involved in the regulation of hepatic glucose and lipid metabolism. Interactions of insulin and RA signaling systems have been observed. This review is aimed at summarizing the history of diabetes, insulin and VA si...

Is There A Role of Vitamin A in Hepatic Glucose and Fatty Acid Metabolism?

Journal of Nutrition & Food Sciences, 2012

Vitamin A (VA, retinol) is an indispensible, lipid-derived micronutrient contributing to the general health of an individual. Retinoids are VA and its derived metabolites that have profound effects on a variety of physiological processes, such as embryogenesis and cellular differentiation [1]. More recently, retinoids have been proposed to play roles in energy homeostasis such as adaptive thermogenesis and adipogenesis [2]. The roles of retinoids in lipid and glucose metabolism have been indicated and potentially linked to the development of chronic metabolic diseases such as obesity and diabetes [3-7]. Obesity and comorbidities are the physiological consequences of a disruption in the regulation of body energy storage, which is associated with profound changes in hepatic glucose and lipid metabolism. These changes are often attributed to the expression levels of hepatic genes involved in glucose and lipid metabolism. The active metabolite of VA responsible for the regulation of gene expression is retinoic acid (RA), which exists in multiple isomeric forms. They activate two families of nuclear receptors: retinoic acid receptors (RARα, β, and γ; activated by all-trans and 9-cis RA) and retinoid X receptors (RXRα, β, and γ; activated by 9-cis RA). RAR/RXR hetero-and RXR/RXR homo-dimer bind to RA-responsive elements (RAREs) in the promoters of the RA responsive genes, and regulate their expression upon activation [1].

Roles of vitamin A status and retinoids in glucose and fatty acid metabolism

Biochemistry and Cell Biology, 2012

The rising prevalence of metabolic diseases, such as obesity and diabetes, has become a public health concern. Vitamin A (VA, retinol) is an essential micronutrient for a variety of physiological processes, such as tissue differentiation, immunity, and vision. However, its role in glucose and lipid metabolism has not been clearly defined. VA activities are mediated by the metabolite of retinol catabolism, retinoic acid, which activates the retinoic acid receptor and retinoid X receptor (RXR). Since RXR is an obligate heterodimeric partner for many nuclear receptors involved in metabolism, it is reasonable to assume that VA status and retinoids contribute to glucose and lipid homeostasis. To date, the impacts of VA and retinoids on energy metabolism in animals and humans have been demonstrated in some basic and clinical investigations. This review summarizes the effects of VA status and retinoid treatments on metabolism of the liver, adipocytes, pancreatic β-cells, and skeletal muscl...

Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes

PloS one, 2014

Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA), total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL) and fatty (ZF) rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA). We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS) diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD) diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interesti...

The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism

Journal of clinical medicine, 2014

Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity's impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key r...

Review The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism

2014

Abstract: Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity’s impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a...

Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

International journal of molecular sciences, 2015

Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to R...

Review Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

2015

physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-tr...

The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling

BMC Genomics, 2013

Background: The eyes and skin are obvious retinoid target organs. Vitamin A deficiency causes night blindness and retinoids are widely used to treat acne and psoriasis. However, more than 90% of total body retinol is stored in liver stellate cells. In addition, hepatocytes produce the largest amount of retinol binding protein and cellular retinoic acid binding protein to mobilize retinol from the hepatic storage pool and deliver retinol to its receptors, respectively. Furthermore, hepatocytes express the highest amount of retinoid x receptor alpha (RXRα) among all the cell types. Surprisingly, the function of endogenous retinoids in the liver has received very little attention. Results: Based on the data generated from chromatin immunoprecipitation followed by sequencing, the global DNA binding of transcription factors including retinoid x receptor α (RXRα) along with its partners i.e. retinoic acid receptor α (RARα), pregnane x receptor (PXR), liver x receptor (LXR), farnesoid x receptor (FXR), and peroxisome proliferator-activated receptor α (PPARα) has been established. Based on the binding, functional annotation illustrated the role of those receptors in regulating hepatic lipid homeostasis. To correlate the DNA binding data with gene expression data, the expression patterns of 576 genes that regulate lipid homeostasis were studied in wild type and liver RXRα-null mice treated with and without RA. The data showed that RA treatment and RXRα-deficiency had opposite effects in regulating lipid homeostasis. A subset of genes (114), which could clearly differentiate the effect of ligand treatment and receptor deficiency, were selected for further functional analysis. The expression data suggested that RA treatment could produce unsaturated fatty acids and induce triglyceride breakdown, bile acid secretion, lipolysis, and retinoids elimination. In contrast, RXRα deficiency might induce the synthesis of saturated fatty acids, triglyceride, cholesterol, bile acids, and retinoids. In addition, DNA binding data indicated extensive cross-talk among RARα, PXR, LXR, FXR, and PPARα in regulating those RA/RXRα-dependent gene expression levels. Moreover, RA reduced serum cholesterol, triglyceride, and bile acid levels in mice. Conclusions: We have characterized the role of hepatic RA for the first time. Hepatic RA mediated through RXRα and its partners regulates lipid homeostasis.

Replenishment of vitamin A for 7 days partially restored hepatic gene expressions altered by its deficiency in rats

Frontiers in Nutrition

We investigated the effects of vitamin A (VA) status on metabolism of Zucker rats with different genders and genotypes, and of short-term refeeding of a VA sufficient (VAS) diet on VA deficient (VAD) animals. First, male and female Zucker lean (ZL) and fatty (ZF) rats at weaning were fed a VAD or VAS diet for 8 weeks. Second, male VAD ZL rats were fed a VAS diet for 3 (VAD-VAS3d) or 7 (VAD-VAS7d) days. The body weight (BW), blood parameters, and hepatic expressions of genes for metabolism were determined. VA deficiency reduced BW gain in ZL and ZF rats of either gender. VAD ZL rats had lower plasma glucose, insulin, and leptin levels than VAS ZL rats. VAD-VAS3d and VAD-VAS7d rats had higher plasma glucose, insulin, and leptin levels than that in the VAD rats. The hepatic mRNA levels of Gck, Cyp26a1, Srebp-1c, Igf1, Rarb, Rxra, Rxrg, Pparg, and Ppard were lowered by VA deficiency. Refeeding of the VAS diet for 3 days restored the Gck and Cyp26a1 expressions, and for 7 days restored t...