Phenomenological modeling of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scale (original) (raw)

Abstract

This work focuses on the modeling of the evolution of anisotropy induced by the development of the dislocation microstructure. A model formulated at the engineering scale in the context of classical metal plasticity and a model formulated in the context of crystal plasticity are presented. Images obtained by transmission-electron microscopy (TEM) show the influence of the strain path on the evolution of anisotropy for the case of two common materials used in sheet metal forming, DC06 and AA6016-T4. Both models are capable of accounting for the transient behavior observed after changes in loading path for fcc and bcc metals. The evolution of the internal variables of the models is correlated with the evolution of the dislocation structure observed by TEM investigations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. Balasubramanian S, Anand L (2002) Elasto-viscoplastic con- stitutive equations for polycrystalline fcc materials at low ho- mologous temperatures. J Mech Phys Solids 50(1):101-126
  2. Baltov A, Sawczuk A (1965) A rule of anisotropic hardening. Acta Mech I(2):81-92
  3. Bouvier S, Teodosiu C, Haddadi H, Tabacaru V (2003) Anisotropic work-hardening behaviour of structural steels and aluminium alloys at large strains. J Phys IV France 105:215-222
  4. Bouvier S, Alves J, Oliveira M, Menezes L (2005) Mod- elling of anisotropic work-hardening behaviour of metallic materials subjected to strain-path changes. Comput Mater Sci 32:301-315
  5. de Montleau P (2004) Programming of Teodosiu's hardening model. IAP P5/08 progress report, Mechanical Engineering, University of Liege, Belgium
  6. Estrin Y, Tóth LS, Molinari A, Bréchet Y (1998) A dislocation-based model for all hardening stages in large strain deformation. Acta Mater 46(15):5509-5522
  7. Fernandes JV, Schmitt JH (1983) Dislocation microstruc- tures in steel during deep drawing. Philos Mag A 48(6): 841-870
  8. Ghosh AK, Backofen WA (1973) Strain-hardening and in- stability in biaxially stretched sheets. Metall Trans 4:1113- 1123
  9. Gurtin M, Fried E, Anand, L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge
  10. Hasegawa T, Yakou T, Karashima S (1975) Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Mater Sci Eng 20:267-276
  11. Hiwatashi S, van Bael A, van Houtte P, Teodosiu C (1997) Modelling of plastic anisotropy based on texture and disloca- tion structure. Comput Mater Sci 9:274-284
  12. Holmedal B, van Houtte P, An Y (2008) A crystal plas- ticity model for strain-path changes in metals. Int J Plast 24(8):1360-1379
  13. Hu Z, Rauch EF, Teodosiu C (1992) Work-hardening behav- ior of mild steel under stress reversal at large strains. Int J Plast 8(7):839-856
  14. Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallo- graphic texture evolution in bulk deformation processing of fcc metals. J Mech Phys Solids 40(3):537-569
  15. Li S, Hoferlin E, van Bael A, van Houtte P, Teodosiu C (2003) Finite element modeling of plastic anisotropy in- duced by texture and strain-path change. Int J Plast 19:647- 674
  16. Mandel J, Généralization de la théorie de plasticité de W. T. Koiter. Int J Solid Struct 1:273-29
  17. Marin EB, Dawson PR (1998) Elastoplastic finite element analyses of metal deformations using polycrystal constitu- tive models. Comput Methods Appl Mech Eng 165(1-4): 23-41
  18. Marin EB, Dawson PR (1998) On modelling the elasto- viscoplastic response of metals using polycrystal plasticity. Comput Methods Appl Mech Eng 165(1-4):1-21
  19. Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31(9):1367-1379
  20. Deutsches Institut für Normung e.V. (2006) DIN EN 10049- measurement of roughness average Ra and peak count RPc on metallic flat products. Tech. rep., DIN
  21. Deutsches Institut für Normung e.V. (2006) DIN EN 10130- cold rolled low carbon steel flat products for cold forming technical delivery conditions. Tech. rep., DIN
  22. Deutsches Institut für Normung e.V. (2009) DIN EN 573-3 aluminium and aluminium alloys-chemical composition and form of wrought products. Tech. rep., DIN
  23. Deutsches Institut für Normung e.V. (2009) DIN EN ISO 6892-1 metallic materials-tensile testing-part 1: method of test at room temperature. Tech. rep., DIN
  24. Nesterova EV, Bacroix B, Teodosiu C (2001) Experimen- tal observation of microstructure evolution under strain-path changes in low-carbon if steel. Mater Sci Eng A 309-310:495- 499
  25. Nesterova EV, Bacroix B, Teodosiu C (2001) Microstruc- ture and texture evolution under strain-path changes in low- carbon interstitial-free steel. Metall Mater Trans 32A:2527- 2538
  26. Noman M, Clausmeyer T, Barthel C, Svendsen B, Huétink J, van Riel M (2010) Experimental characterization and model- ing of the hardening behavior of the sheet steel LH800. Mater Sci Eng A 527(10-11):2515-2526
  27. Peeters B, Kalidindi SR, Teodosiu C, van Houtte P, Aernoudt E (2002) A theoretical investigation of the influence of dislocation sheets on evolution of yield sur- faces in single-phase b.c.c. polycrystals. J Mech Phys Solids 50(4):783-807
  28. Rauch EF, Schmitt JH (1989) Dislocation substructures in mild steel deformed in simple shear. Mater Sci Eng A 113:441-448
  29. Rauch EF, Thuillier S (1993) Rheological behaviour of mild steel under monotonic loading conditions and cross-loading. Mater Sci Eng A 164:255-259
  30. Rybin VV (1986) Severe plastic deformations and fracture of metals. Metallurgiya, Moscow
  31. Stander N, Roux W, Goel T, Eggleston T, Craig K (2008) LS-OPT user's manual. Livermore Software Technology Corporation
  32. Strauven Y, Aernoudt E (1987) Directional strain softening in ferritic steel. Acta Metall 35:1029-1036
  33. Teodosiu C, Hu Z (1995) Evolution of the intragran- ular microstructure at moderate and large strains: modelling and computational significance. In: Shen SF, Dawson PR (eds) Simulation of materials processing: theory, methods and applications. Balkema, Rotterdam, pp 173- 182
  34. Teodosiu C, Hu Z (1998) Microstructure in the continuum modelling of plastic anisotropy. In: Proceedings of 19th Risø international symposium on material's science: modelling of structure and mechanics of materials from microscale to product. Risø National Laboratory, Roskilde, Denmark, pp 149-168
  35. Thuillier S, Rauch EF (1994) Development of microbands in mild steel during cross loading. Acta Metall Mater 42:1973- 1983
  36. Thuillier S, Manach PY, Menezes LF (2010) Occurence of strain path changes in a two-stage deep drawing process. J Mater Process Technol 210(2):226-232
  37. van Riel M, van den Boogaard AH (2007) Stress-strain re- sponses for continuous orthogonal strain path changes with increasing sharpness. Scr Mater 57(5):381-384
  38. van Riel M (2009) Strain path dependency in sheet metal-experiments and models. Dissertation, Universiteit Twente