Matrix approach to Frobenius-Euler polynomials (original) (raw)

Abstract

In the last two years Frobenius-Euler polynomials have gained renewed interest and were studied by several authors. This paper presents a novel approach to these polynomials by treating them as Appell polynomials. This allows to apply an elementary matrix representation based on a nilpotent creation matrix for proving some of the main properties of Frobenius-Euler polynomials in a straightforward way.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (23)

  1. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with For- mulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)
  2. Aceto, L., Trigiante, D.: The Matrices of Pascal and Other Greats. Amer. Math. Monthly 108 (3), 232-245 (2001)
  3. Appell, P., Sur une classe de polynômes. Ann. Sci. École Norm. Supér. 9, 119-144 (1880)
  4. Araci, S., Acikgoz, M.: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
  5. Avram, F., Taqqu, M. S.: Noncentral Limit Theorems and Appell Polynomial. Ann. Probab. 15(2), 767-775 (1987)
  6. Boas, R. P., Buck, R. C.: Polynomial expansions of analytic functions. Springer, Berlin (1964)
  7. Call, G. S., Velleman, J.: Pascal's Matrices. Amer. Math. Monthly 100, 372-376 (1993)
  8. Carlitz, L.: The product of two eulerian polynomials. Math. Magazine. 36 (1), 37-41 (1963)
  9. Carlson, B. C.: Polynomials Satisfying a Binomial Theorem. J. Math. Anal. Appl. 32, 543-558 (1970)
  10. Chen, S., Cai, Y., Luo, Q-M: An extension of generalized Apostol-Euler polyno- mials. Adv. Difference Equ. 61, (2013). doi:10.1186/1687-1847-2013-61
  11. Choi, J., Kim, D. S., Kim, T., Kim, Y. H.: A Note on Some Identities of Frobenius-Euler Numbers and Polynomials. Int. J. Math. Math. Sci. (2012). doi:10.115/2012/861797
  12. Costabile, F. A., Longo, E.: The Appell interpolation problem. J. Comp. Appl. Math. 236, 1024-1032 (2011)
  13. Fairlie, D. B., Veselov, A. P.: Faulhaber and Bernoulli polynomials and solitons. Physica D 152-153, 47-50 (2000)
  14. Frobenius, G.: Uber die Bernoulli'schen Zahlen und die Euler'schen Polynome. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 809-847 (1910)
  15. Grosset, M. P., Veselov, A. P.: Elliptic Faulhaber polynomials and Lamé den- sities of states. Int. Math. Res. Not., Article ID 62120, 31 pp. (2006). doi: 10.1155/IMRN/2006/62120
  16. Khan, S., Raza, N.: 2-iterated Appell polynomials and related numbers. Appl. Math. Comput. 219, 9469-9483 (2013)
  17. Kim, D. S., Kim, T.: Some new identities of Frobenius-Euler numbers and poly- nomials. J. Inequal. Appl. 307, (2012). doi: 10.1186/1029-242X-2012-307
  18. Kim, D. S., Kim, T., Lee, S-H, Rim, S-H: A note on the higher-order Frobenius- Euler polynomials and Sheffer sequences. Adv. Difference Equ. 41, (2013). doi: 10.1186/1687-1847-2013-41
  19. Kurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius-Euler polynomi- als. Adv. Difference Equ. 2013, 1 (2013). doi: 10.1186/1687-1847-2013-1
  20. Malonek, H., Tomaz, G.: Laguerre polynomials in several hypercomplex variables and their matrix representation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B. (eds.) Computational Science and Its Applications-ICCSA 2011, LNCS, vol. 6784, pp. 261-270. Springer-Verlag Berlin, Heidelberg (2011)
  21. Srivastava, H. M., Pintér, Á.: Remarks on Some Relationships Between the Bernoulli and Euler Polynomials. Appl. Math. Lett. 17, 375-380 (2004)
  22. Tomaz, G., Malonek, H. R.: Special Block Matrices and Multivariate Polynomials. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Ap- plied Mathematics (ICNAAM 2010). AIP Conference Proceedings, vol.1281, pp. 1515-1518. Melville, New York (2010)
  23. Tomaz, G.: Polinómios de Appell multidimensionais e sua representação matricial. PhD-Thesis (in Portuguese), University of Aveiro (2012)