Elastic moduli of composites containing a low concentration of complex-shaped particles having a general property contrast with the matrix (original) (raw)

A Lattice Model for Elastic Particulate Composites

Materials

In the present article, a version of the lattice or spring network method is proposed to model the mechanical response of elastic particulate composites with a high volume fraction of spherical particles and with a much weaker matrix compared to the stiffness of the particles. The main subject of the article is the determination of the axial stiffnesses of the springs of the cell. A comparison of the mechanical response of a three-dimensional particulate composite cube obtained using the finite element method and the proposed methodology showed that the efficiency of the proposed methodology increases with an increasing volume fraction of the particles.

Estimation of Elastic Moduli of Particulate Composites by New Models and Comparison with Moduli Measured by Tension, Dynamic, and Ultrasonic Tests

Advances in Materials Science and Engineering, 2010

The elastic constants of particulate composites are evaluated employing a theoretical cube-within-cube formation. Two new models of four and five components, respectively, formed by geometrical combination of three-component models existing in the literature, are used as Representative Volume Elements. Using the governing stress and strain equations of the proposed models, two new equations providing the static elastic and shear moduli of particulate composites are formulated. In order to obtain the dynamic elastic and shear moduli, the correspondence principle was applied successively to components connected in series and/or in parallel. The results estimated by the proposed models were compared with values evaluated from existing formulae in the literature, as well as with values obtained by tensile, dynamic, and ultrasonic experiments in epoxy/iron particulate composites. They were found to be close to values obtained by static and dynamic measurements and enough lower compared with values obtained from ultrasonic experiments. The latter is attributed to the high frequency of ultrasonics. Since measurements from ultrasonic's and from dynamic experiments depend on the frequency, the modulus of elasticity estimated by ultrasonic's is compared with that (storage modulus) estimated by dynamic experiments.

Modeling of Elastic properties of Particulate Composites

2018

In this present work the effective elastic modulus of nanocomposites of epoxy reinforced with spherical shape Al2O3 particles of 40 nanometer diameter, up to a volume fraction of 10%, randomly distributed, is evaluated under uniaxial loading condition using finite element method (FEM). In order to obtain realistic prediction of elastic modulus of polymer nanocomposites, three dimensional representative volume elements (RVE) were considered. A MATLAB code was written to position the particles inside the RVE randomly. The ANSYS Parametric Design Language (APDL) of the software was used to generate the RVE and evaluate the elastic modulus. Five different RVEs were analyzed and the average of elastic modulus from the five analyses was taken for final result for each volume fraction of alumina particles. Elastic modulus of polymer nanocomposites obtained from the finite element analysis was also compared with the result obtained from Halpin Tsai analytical model, and the possible reasons...

Equivalent-Inclusion Approach for Estimating the Elastic Moduli of Matrix Composites with Non-Circular Inclusions

Vietnam Journal of Mechanics, 2015

A novel approach to predict the effective elastic moduli of matrix composites made from non-circular inclusions embedded in a continuous matrix is proposed. In this approach, those inhomogeneities are substituted by simple equivalent circularinclusions with modified elastic properties obtained from comparing the dilute solution results. Available simple approximations for the equivalent circular-inclusion medium then can be used to estimate the effective elastic moduli of the original composite. Robustness of proposed approach is demonstrated through the numerical examples with elliptic inclusions.

Prediction of the Elastic Modulus of Particulate Composites by Means of a General Evaluation Method Using a Four Components Model

In this study, the elastic modulus of particulate composites by means of a model cubewithin-cube is evaluated. The R.V.E. (representative volume element) is consisted by four components, of which one component corresponds to the filler and the rest three components correspond to the matrix. Because of the different composite geometry in the three directions, 3 submodels are created, one in each direction, providing 3 different values for the elastic modulus. The evaluation procedure considers triaxial stress situation in each part of the model and the elastic modulus is evaluated by means of the governing stresses and elongations equations of the model. The theoretical results are compared with those derived by existing equations in the literature as well as with experimental tensile results and ultrasonic measurements in epoxy / iron particulate composites.

Link between the conductivity and elastic moduli of composite materials

Physical Review Letters, 1993

We derive relations linking the conductivity a+ and elastic moduli of any two-dimensional, isotropic composite material. Specifically, upper and lower bounds are derived on the effective bulk modulus x+ in terms of a~and on the effective shear modulus p~in terms of a~. In some cases the bounds are attainable by certain microgeometries and thus optimal. Knowledge of the conductivity can yield sharp estimates of the elastic moduli (and vice versa) even for infinite phase contrast.

Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites

Scientific Reports

The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young’s moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression of the composites moduli that allows introducing an adhesion factor kadh ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable kadh for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if kadh exceeds \sqrt{{E}_{\mathrm{M}}/{E}_{\mathrm{F}}}$$ E M / E F and depends on the ratio...

Effective Elastic Moduli of Composite Materials: Reduced Parameter Dependence

Applied Mechanics Reviews, 1997

In this paper, we focus on the effective elastic constants of composite materials and pay attention to the possibility of reducing the number of independent variables. Surprisingly, this important issue has hardly been explored before. In our analysis, we rely on a new result in plane elasticity due to , and use Dundurs constants (Dundurs, 1967(Dundurs, , 1969. As an example, we consider a result for the effective elastic moduli of a composite containing a dilute concentration of perfectly-bonded circular inclusions.

Effect of an inhomogeneous interphase zone on the bulk modulus of a particulate composite containing spherical inclusions

Composites Part B: Engineering, 2016

The effects of an inhomogeneous interphase zone on the effective bulk modulus of particulate composites containing large concentrations of inclusions are analyzed. The composite is modeled as a suspension of elastic homogeneous hollow spherical particles in a continuous elastic matrix. An interphase zone surrounding inclusions where the matrix material has elastic moduli with radial variation that asymptotically assume a constant value far away from particles is then modeled. The related elastic problem of a single inclusion in a finite matrix subjected to a spherically symmetric load is considered and a closed-form solution in terms of hypergeometric functions is determined. This analytical solution is then employed to derive an explicit expression for the effective bulk modulus. A detailed parametric analysis is finally performed to investigate the influence of the geometric characteristics and elastic properties of the graded interphase zone for composites containing voids or solid/hollow inclusions.

Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials

Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1995

We derive rigorous cross-property relations linking the effective transverse electrical conductivity cr* and the effective transverse elastic moduli of any transversely isotropic, two-phase ‘fibre-reinforced’ composite whose phase boundaries are cylindrical surfaces with generators parallel to one axis. Specifically, upper and lower bounds are derived on the effective transverse bulk modulus k* in terms of cr* and on the effective transverse shear modulus //* in terms of cr*. These bounds enclose certain regions in the ct*-ac* and cr*-/r* planes, portions of which are attainable by certain microgeometries and thus optimal. Our bounds connecting the effective conductivity cr* to the effective bulk modulus ft* apply as well to anisotropic composites with square symmetry. The implications and utility of the bounds are explored for some general situations, as well as for specific microgeometries, including regular and random arrays of circular cylinders, hierarchical geometries correspo...