Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques (original) (raw)

2003, Journal of Biomedical Materials Research

The current study analyzes the in vivo performance of porous sintered hydroxyapatite (HA) bone repair scaffolds fabricated using the TheriForm™ solid freeform fabrication process. Porous HA scaffolds with engineered macroscopic channels had a significantly higher percentage of new bone area compared with porous HA scaffolds without channels in a rabbit calvarial defect model at an 8-week time point. An unexpected finding was the unusually large amount of new bone within the base material structure, which contained pores less than 20 m in size. Compared with composite scaffolds of 80% polylactic-co-glycolic acid and 20% ␤-tricalcium phosphate with the same macroscopic architecture as evaluated in a previous study, the porous HA scaffolds with channels had a significantly higher percentage of new bone area. Therefore, the current study indicates that scaffold geometry, as determined by the fabrication process, can enhance the ability of a ceramic material to accelerate healing of calvarial defects.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.