Comparison of Sensitivity and Low-Frequency Noise Contributions in Giant-Magnetoresistive and Tunneling-Magnetoresistive Spin-Valve Sensors with a Vortex-State Free Layer (original) (raw)

Abstract

Magnetoresistive spin valve sensors based on the giant-(GMR) and tunnelling-(TMR) magnetoresisitve effect with a flux-closed vortex state free layer design are compared by means of sensitivity and low frequency noise. The vortex state free layer enables high saturation fields with negligible hysteresis, making it attractive for applications with a high dynamic range. The measured GMR devices comprise lower pink noise and better linearity in resistance but are less sensitive to external magnetic fields than TMR sensors. The results show a comparable detectivity at low frequencies and a better performance of the TMR minimum detectable field at frequencies in the white noise limit.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (35)

  1. V. S. Luong, Y. H. Su, C. C. Lu, J. T. Jeng, J. H. Hsu, M. H. Liao, J. C. Wu, M. H. Lai, and C. R. Chang, IEEE Transactions on Nanotechnology PP, 1 (2017).
  2. J. Valadeiro, M. Silva, S. Cardoso, M. Martins, J. Gaspar, P. P. Freitas, and A. M. Sebastio, in 2017 IEEE Sensors Applications Symposium (SAS) (2017) pp. 1-6.
  3. S. Scherner and R. Slatter, in CIPS 2014; 8th Interna- tional Conference on Integrated Power Electronics Sys- tems (2014) pp. 1-7.
  4. M. Hartmann, Ultra-compact and ultra-efficient three- phase PWM rectifier systems for more electric aircraft, Ph.D. thesis, ETH Zurich (2011).
  5. J. Zimmer, A. Satz, W. Raberg, H. Brueckl, and D. Suess, "Device, magnetic sensor device and method," (2015), uS Patent App. 14/141,660.
  6. T. Wurft, W. Raberg, K. Pruegl, A. Satz, G. Reiss, and H. Brueckl, IEEE Transactions on Magnetics PP, 1 (2017).
  7. F. Xie, R. Weiss, and R. Weigel, IEEE Transactions on Industrial Electronics 64, 710 (2017).
  8. R. Windl, C. Abert, F. Bruckner, C. Huber, C. Vogler, H. Weitensfelder, and D. Suess, AIP Advances 7, 115121 (2017), https://doi.org/10.1063/1.5004499.
  9. W. Granig, S. Hartmann, and B. Koeppl, in SAE Tech- nical Paper (SAE International, 2007).
  10. K. Kapser, S. Zaruba, P. Slama, and E. Katzmaier, "Ad- vanced microsystems for automotive applications 2008," (Springer, Berlin, Heidelberg, 2008) Chap. Speed Sensors for Automotive Applications Based on Integrated GMR Technology.
  11. G. Vasilescu, Electronic Noise and Interfering Signals: Principles and Applications, Signals and Communication Technology (Springer Berlin Heidelberg, 2006).
  12. F. N. Hooge, IEEE Transactions on Electron Devices 41, 1926 (1994).
  13. P. Dhagat, A. Jander, and C. A. Nordman, Journal of Applied Physics 97, 10C911 (2005), http://dx.doi.org/10.1063/1.1851952.
  14. L. Jiang, E. Nowak, P. Scott, J. Johnson, J. Slaughter, J. Sun, and R. Dave, Physical Review B -Condensed Matter and Materials Physics 69, 544071 (2004), cited By 88.
  15. Z. Q. Lei, G. J. Li, W. F. Egelhoff, P. T. Lai, and P. W. T. Pong, IEEE Transactions on Magnetics 47, 602 (2011).
  16. A. F. M. Nor and E. W. Hill, IEEE Transactions on Mag- netics 38, 2697 (2002).
  17. N. Smith, A. M. Zeltser, and M. R. Parker, IEEE Trans- actions on Magnetics 32, 135 (1996).
  18. W. Egelhoff, P. Pong, J. Unguris, R. McMichael, E. Nowak, A. Edelstein, J. Burnette, and G. Fischer, Sensors and Actuators A: Physical 155, 217 (2009).
  19. D. S. Reed, C. Nordman, and J. M. Daughton, IEEE Transactions on Magnetics 37, 2028 (2001).
  20. C. K. Boggs, A. D. Doak, and F. L. Walls, in Proceedings of the 1995 IEEE International Frequency Control Sym- posium (49th Annual Symposium) (1995) pp. 367-373.
  21. K. B. Klaassen, X. Xing, and J. C. L. van Peppen, IEEE Transactions on Magnetics 40, 195 (2004).
  22. E. R. Nowak, M. B. Weissman, and S. S. P. Parkin, Applied Physics Letters 74, 600 (1999).
  23. K. Ishihara, M. Nakada, E. Fukami, K. Nagahara, H. Honjo, and K. Ohashi, IEEE Transactions on Mag- netics 37, 1687 (2001).
  24. R. Guerrero, M. Pannetier-Lecoeur, C. Fermon, S. Car- doso, R. Ferreira, and P. P. Freitas, Journal of Applied Physics 105, 113922 (2009).
  25. K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Physical Review B 65 (2001), 10.1103/PhysRevB.65.024414.
  26. K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Applied Physics Letters 78, 3848 (2001).
  27. K. Y. Guslienko, Journal of nanoscience and nanotech- nology 8 6, 2745 (2008).
  28. N. A. Stutzke, S. E. Russek, D. P. Pappas, and M. Tondra, Journal of Applied Physics 97 (2005), 10.1063/1.1861375.
  29. G. Scandurra, G. Cannat, and C. Ciofi, AIP Advances 1 (2011), 10.1063/1.3605716.
  30. J. M. Almeida, P. Wisniowski, and P. P. Freitas, IEEE Transactions on Magnetics 44, 2569 (2008).
  31. G. C. Han, B. Y. Zong, P. Luo, and C. C.
  32. Wang, Journal of Applied Physics 107, 09C706 (2010), https://doi.org/10.1063/1.3357332.
  33. A. Gokce, E. R. Nowak, S. H. Yang, and S. S. P. Parkin, Journal of Applied Physics 99, 08A906 (2006).
  34. C. Reig, S. Cardoso, and S. C. Mukhopadhyay, Giant Magnetoresistance (GMR) Sensors: From Basis to State- of-the-Art Applications (Springer-Verlag Berlin Heidel- berg, 2013).
  35. A. Ozbay, E. R. Nowak, A. S. Edelstein, G. A. Fischer, C. A. Nordman, and S. F. Cheng, IEEE Transactions on Magnetics 42, 3306 (2006).