Metal-Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation (original) (raw)

2018, Chemistry (Weinheim an der Bergstrasse, Germany)

Because of their high tunability and surface area, metal-organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL-100(Fe) and disordered Basolite® F300, with identical iron 1,3,5-benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL-100(Fe) shows a regular MTN-zeotype crystal structure with two types of cages, Basolite® F300 lacks long-range order beyond 8 Å and has a single-pore system. The medium-range configurational linker-node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL-100(Fe). The hydrophilic/hydrophobic nature of MIL-100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impreg...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact