General nonchemotactic mutants of Caulobacter crescentus (original) (raw)
Related papers
General nonchemotactic mutants of C. crescentus
Genetics
We have examined 35 mutants that have defects in general chemotaxis. Genetic analysis of these mutants resulted in the identification of at least eight che genes located at six different positions on the Caulobacter crescentus chromosome. The cheR, cheB and cheT genes appeared to be located in a three-gene cluster. Mutations in these three genes resulted in the inability of the flagellum to reverse the direction of rotation. Defects in the cheR gene resulted in a loss of the ability to methylate the methyl-accepting chemotaxis proteins. In vitro experiments showed that the lack of in vivo methylation in cheR mutants was due to the absence of methyltransferase activity. Defects in the cheB gene resulted in greatly reduced chemotaxis-associated methylation in vivo and a loss of methylesterase activity in vitro. The specific defects responsible for the lack of a chemotactic response have not been determined for the other identified che genes.
Analysis ofNonmotile Mutants oftheDimorphic Bacterium Caulobacter crescentus
2010
A total of 69 spontaneous nonmotile mutants were isolated from the dimorphic bacterium Caulobacter crescentus. The majority of the mutants were unable to assemble a flagellar filament (Fla-), although eight were able to synthesize a short stub of a flagellum. A third mutant class assembled flagella of normal morphology
Journal of bacteriology, 1995
The expression of the Caulobacter ccrM gene and the activity of its product, the M.Ccr II DNA methyltransferase, are limited to a discrete portion of the cell cycle (G. Zweiger, G. Marczynski, and L. Shapiro, J. Mol. Biol. 235:472-485, 1994). Temporal control of DNA methylation has been shown to be critical for normal development in the dimorphic Caulobacter life cycle. To understand the mechanism by which ccrM expression is regulated during the cell cycle, we have identified and characterized the ccrM promoter region. We have found that it belongs to an unusual promoter family used by several Caulobacter class II flagellar genes. The expression of these class II genes initiates assembly of the flagellum just prior to activation of the ccrM promoter in the predivisional cell. Mutational analysis of two M.Ccr II methylation sites located 3' to the ccrM promoter suggests that methylation might influence the temporally controlled inactivation of ccrM transcription. An additional pa...
Nucleic Acids Research, 2012
The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.
Molecular microbiology, 2013
DNA methylation regulates many processes, including gene expression, by superimposing secondary information on DNA sequences. The conserved CcrM enzyme, which methylates adenines in GANTC sequences, is essential to the viability of several Alphaproteobacteria. In this study, we find that Caulobacter crescentus cells lacking the CcrM enzyme accumulate low levels of the two conserved FtsZ and MipZ proteins, leading to a severe defect in cell division. This defect can be compensated by the expression of the ftsZ gene from an inducible promoter or by spontaneous suppressor mutations that promote FtsZ accumulation. We show that CcrM promotes the transcription of the ftsZ and mipZ genes and that the ftsZ and mipZ promoter regions contain a conserved CGACTC motif that is critical to their activities and to their regulation by CcrM. In addition, our results suggest that the ftsZ promoter has the lowest activity when the CGACTC motif is non-methylated, an intermediate activity when it is hem...
Journal of Bacteriology
Sensory adaptation by the chemotaxis system of Escherichia coli requires adjustments of the extent of methyl esterification of the chemotaxis receptor proteins. One mechanism utilized by E. coli to make such adjustments is to control the activity of CheB, the enzyme responsible for removing receptor methyl ester groups. Previous work has established the existence of a multicomponent signal transduction pathway that enables the chemotaxis receptor proteins to control the methylesterase activity in response to chemotactic stimuli. We isolated and characterized CheB mutants that do not respond normally to this control mechanism. In intact cells these CheB variants could not be activated in response to negative chemotaxis stimuli. Further characterization indicated that these CheB variants could not be phosphorylated by the chemotaxis protein kinase CheA. Disruption of the mechanism responsible for regulating methylesterase activity was also observed in cells carrying chromosomal deletions of either cheA or cheW as well as in cells expressing mutant versions of CheA that lacked kinase activity. These results provide further support for recent proposals that activation of the methylesterase activity of CheB involves phosphorylation of CheB by CheA. Furthermore, our findings suggest that CheW plays an essential role in enabling the chemotaxis receptor proteins to control the methylesterase activity, possibly by controlling the CheA-CheB phosphotransfer reaction.
Journal of bacteriology, 1989
During the Caulobacter crescentus cell cycle, flagellin synthesis and filament assembly are temporally controlled events which require the products encoded by the contiguous flaF, flbT, and flbA-flaG transcription units (P.V. Schoenlein, L.S. Gallman, and B. Ely, J. Bacteriol. 171:000-000, 1989). To better define the functions of these genes, immunoprecipitation studies, Western blot (immunoblot) analyses, and electron microscopic analyses characterized flagellin synthesis and assembly in mutant and merodiploid strains. Mutations in the flaF or flbA-flaG transcription unit resulted in reduced synthesis of the 25- and 27-kilodalton (kDa) flagellins. In contrast, mutations in flbT resulted in overproduction of these flagellins. The FlbT phenotype is unique, since all other identified C. crescentus fla mutations cause a reduction in the levels of the 25- and 27-kDa flagellins. Furthermore, the flbT mutant showed a chemotaxis deficiency even though it was motile. Thus, the flbT gene pro...
Chemotaxis and flagellar genes of Chromobacterium violaceum
Genetics and molecular research : GMR, 2004
The availability of the complete genome of the Gram-negative beta-proteobacterium Chromobacterium violaceum has increasingly impacted our understanding of this microorganism. This review focuses on the genomic organization and structural analysis of the deduced proteins of the chemosensory adaptation system of C. violaceum. C. violaceum has multiple homologues of most chemotaxis genes, organized mostly in clusters in the bacterial genome. We found at least 67 genes, distributed in 10 gene clusters, involved in the chemotaxis of C. violaceum. A close examination of the chemoreceptors methyl-accepting chemotaxis proteins (MCPs), and the deduced sequences of the members of the two-component signaling system revealed canonical motifs, described as essential for the function of the deduced proteins. The chemoreceptors found in C. violaceum include the complete repertoire of such genes described in bacteria, designated as tsr, tar, trg, and tap; 41 MCP loci were found in the C. violaceum ...