Measuring the entanglement of bipartite pure states (original) (raw)
Related papers
On witnessing arbitrary bipartite entanglement in a measurement device independent way
2017
Experimental detection of entanglement of an arbitrary state of a given bipartite system is crucial for exploring many areas of quantum information. But such a detection should be made in a device independent way if the preparation process of the state is considered to be faithful, in order to avoid detection of a separable state as entangled one. The recently developed scheme of detecting bipartite entanglement in a measurement device independent way [Phys. Rev. Lett 110, 060405 (2013)] does require information about the state. Here by using Auguisiak et al.'s universal entanglement witness scheme for two-qubit states [Phys. Rev. A 77, 030301 (2008)], we provide a universal detection scheme for two-qubit states in a measurement device independent way. We provide a set of universal witness operators for detecting NPT-ness(negative under partial transpose) of states in a measurement device independent way. We conjecture that no such universal entanglement witness exists for PPT(p...
Detection of entanglement with few local measurements
Physical Review A, 2002
We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudo-mixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements. 03.67.Dd, 03.67.Hk, A central aim in the physics of quantum information is to create and detect entanglement -the resource that allows to realize various quantum protocols. Recently, much progress has been achieved experimentally in creating entangled states . In every real experiment noise and imperfections are present so that the generated states, although intended to be entangled, may in fact be separable. Therefore, it is important to find efficient experimental methods to test whether a given imperfect state ρ is indeed entangled.
Witnessing arbitrary bipartite entanglement in a measurement-device-independent way
Physical Review A
Experimental detection of entanglement of an arbitrary state of a given bipartite system is crucial for exploring many areas of quantum information processing. But such a detection should be made in a device-independent way if the preparation process of the state is considered to be faithful, in order to avoid detection of a separable state as an entangled one. The recently developed scheme of detecting bipartite entanglement in a measurement-deviceindependent way [Phys. Rev. Lett. 110, 060405 (2013)] does require information about the state. Here, by using Auguisiak et al.'s universal entanglement witness scheme for two-qubit states [Phys. Rev. A 77, 030301 (2008)], we provide a universal entanglement detection scheme for two-qubit states in a measurement-device-independent way. We also provide a set of universal witness operators for detecting NPT-ness (negative under partial transpose) of two-qudit states in a measurement-device-independent way. We conjecture that no such universal entanglement witness scheme exists for PPT (positive under partial transpose) entangled states. We also analyze the robustness of some of the experimental schemes-for detecting entanglement in a measurement-device-independent wayunder the influence of noise in the inputs (from the referee) as well as in the measurement operator.
Detecting Entanglement by State Preparation and a Fixed Measurement
arXiv (Cornell University), 2023
It is shown that a fixed measurement setting, e.g., a measurement in the computational basis, can detect all entangled states by preparing multipartite quantum states, called network states. We present network states for both cases to construct decomposable entanglement witnesses (EWs) equivalent to the partial transpose criteria and also non-decomposable EWs that detect undistillable entangled states beyond the partial transpose criteria. Entanglement detection by state preparation can be extended to multipartite states such as graph states, a resource for measurement-based quantum computing. Our results readily apply to a realistic scenario, for instance, an array of superconducting qubits. neutral atoms, or photons, in which the preparation of a multipartite state and a fixed measurement are experimentally feasible.
2012
We derive a simple lower bound on the geometric measure of entanglement for mixed quantum states in the case of a general multipartite system. The main ingredient of the presented derivation is the triangle inequality applied to the root infidelity distance in the space of density matrices. The obtained bound leads to entanglement criteria with a straightforward interpretation. Proposed criteria provide an experimentally accessible, powerful entanglement test.
Entanglement measurement based on two-particle interference
2005
We propose a simple and realizable method using a two-particle interferometer for the experimental measurement of pairwise entanglement, assuming some prior knowledge about the quantum state. The basic idea is that the properties of the density matrix can be revealed by the single-and two-particle interference patterns. The scheme can easily be implemented with polarized entangled photons.
Exploring entanglement with the help of quantum state measurement
American Journal of Physics, 2014
We have performed a series of experiments using a spontaneous parametric down-conversion source to produce pairs of photons in either entangled or non-entangled polarization states. We determine the full quantum mechanical polarization state of one photon, conditioned on the results of measurements performed on the other photon. For non-entangled states, we find that the measured state of one photon is independent of measurements performed on the other. However, for entangled states, the measured state does depend on the results of measurements performed on the other photon. This is possible because of the nonlocal nature of entangled states. These experiments are suitable for an undergraduate teaching laboratory. V
Optimal estimation of two-qubit pure-state entanglement
Physical Review A, 2000
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.