On Regularity Theorems for Linearly Invariant Families of Harmonic Functions (original) (raw)
Abstract
The classical theorem of growth regularity in the class S of analytic and univalent in the unit disc ∆ functions f describes the growth character of different functionals of f ∈ S and z ∈ ∆ as z tends to ∂∆. Earlier the authors proved the theorems of growth and decrease regularity for harmonic and sensepreserving in ∆ functions which generalized the classical result for the class S. In the presented paper we establish new properties of harmonic sense-preserving functions, connected with the regularity theorems. The effects both common for analytic and harmonic case and specific for harmonic functions are displayed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- Hayman W. K. Some applications of the transfinite diameter to the theory of functions. J. Anal. Math., 1951, no. 1, pp. 155-179.
- Krzyż J. On the maximum modulus of univalent function. Bull. Pol. Acad. Sci. Math., 1955, vol. CI, no. 3, pp. 203-206.
- Bieberbach L. Einführung in die konforme Abbildung. Sammlung Göschen, Band 768/786a, 1967.
- Hayman W. K. Multivalent functions. Cambridge University Press, 1994.
- Pommerenke Ch. Linear-invariante Familien analytischer Funktionen. I. Math. Ann., 1964, vol. 155, pp. 108-154. DOI: 10.1007/BF01344077.
- Campbell D. M. Applications and proofs of a uniqueness theorems for linear invariant families of finite order. Rocky Mountain J. Math., 1974, vol. 4, no. 4, pp. 621-634. DOI: 10.1216/RMJ-1974-4-4-621.
- Starkov V. V. Regularity theorems for universal linearly invariant fami- lies of functions. Serdica Math. J., 1985, vol. 11, no. 3, pp. 299-318. (in Russian).
- Schaubroeck L. E. Subordination of planar harmonic func- tions. Complex Variables, 2000, vol. 41, is. 2, pp. 163-178. DOI: 10.1080/17476930008815245
- Sheil-Small T. Constants for planar harmonic mappings. J. Lond. Math. Soc. (2), 1990, vol. 42, pp. 237-248. DOI: 10.1112%2Fjlms%2Fs2-42.2.237.
- Sobczak-Kneć M., Starkov V. V., Szynal J. Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 2012, vol. LXV, no. 2, pp. 191- 202. DOI: 10.2478/v10062-011-0024-3
- Ganenkova E. G., Starkov V. V. Regularity theorems for harmonic func- tions. J. Appl. Anal., 2014, vol. 21, is. 1, pp. 25-36. DOI: 10.1515/jaa-2015- 0003.
- Graf S. Yu. Regularity theorems for Jacobian in linearly and affine inva- riant families of harmonic mappings. Application of the functional analysis in the approximation theory, 2014, pp. 10-21. (in Russian).
- Ganenkova E. G. A theorem of decrease regularity in linearly invariant families of functions. Tr. Petrozavodsk. Gos. Univ. Ser. Mat, 2006, vol. 13, pp. 46-59 (in Russian).
- Ganenkova E. G. A theorem on the regularity of decrease in linearly in- variant families of functions. Russian Mathematics (Izvestiya VUZ. Mate- matika), 2007, vol. 51, no. 2, pp. 71-74. DOI: 10.3103/S1066369X07020090.
- Clunie J., Sheil-Small T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Math., 1984, vol. 9, pp. 3-25.
- DOI: 10.5186/aasfm.1984.0905#sthash.GEE2gFK0.dpuf.
- Duren P. Harmonic mappings in the plane. Cambridge university press, 2004.
- Godula J., Starkov V. V. Linear invariant families. Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1998, vol. 5, p. 3-96 (in Russian).