Group-Specific Signatures in the Echolocation Calls of Female Little Brown Bats ( Myotis lucifugus ) are Not an Artefact of Clutter at the Roost Entrance (original) (raw)
Related papers
Socially foraging bats discriminate between group members based on search-phase echolocation calls
Behavioral Ecology
Animals have evolved diverse strategies to use social information for increasing foraging success and efficiency. Echolocating bats, for example, can eavesdrop on bats foraging nearby because they shift from search-phase calls to feeding buzzes when they detect prey. Feeding buzzes can directly convey information about prey presence, but it is unknown whether search-phase calls also convey social information. Here, we investigated whether search-phase echolocation calls, distinct calls produced by some bat species to scan large open areas for prey, can additionally convey individual identity. We tested this in Molossus molossus, a neotropical insectivorous bat that forages with group members, presumably to find ephemeral insect swarms more efficiently. We caught M. molossus from six different social groups and recorded their search-phase calls during a standardized release procedure, then recaptured and tested 19 marked bats with habituation–dishabituation playback experiments. We s...
Experimental evidence for group hunting via eavesdropping in echolocating bats
Proceedings of the Royal Society B: Biological Sciences, 2009
Group foraging has been suggested as an important factor for the evolution of sociality. However, visual cues are predominantly used to gain information about group members' foraging success in diurnally foraging animals such as birds, where group foraging has been studied most intensively. By contrast, nocturnal animals, such as bats, would have to rely on other cues or signals to coordinate foraging. We investigated the role of echolocation calls as inadvenently produced cues for social foraging in the insectivorous bat Noctilio albiventris. Females of this species live in small groups, forage over water bodies for swarming insects and have an extremely short daily activity period. We predicted and confirmed that (i) free-ranging bats are attracted by playbacks of echolocation calls produced during prey capture, and that (ii) bats of the same social unit forage together to benefit from passive information transfer via the change in group members' echolocation calls upon finding prey. Network analysis of high-resolution automated radio telemetry confirmed that group members flew within the predicted maximum hearing distance 94 ± 6 per cent of the time. Thus, echolocation calls also serve as intra specific communication cues. Sociality appears to allow for more effective group foraging strategies via eavesdropping on acoustical cues of group members in nocturnal mammals.
Animal Behaviour, 2010
Chiroptera communication eavesdropping lesser bulldog bat Noctilio albiventris recognition social behaviour Bats use echolocation for orientation during foraging and navigation. However, it has been suggested that echolocation calls may also have a communicative function, for instance between roost members. In principle, this seems possible because echolocation calls are species specific and known to differ between the sexes, and between colonies and individuals for some species. We performed playback experiments with lesser bulldog bats, Noctilio albiventris, to which we presented calls of familiar/unfamiliar conspecifics, cohabitant/noncohabitant heterospecifics and ultrasonic white noise as a control. Bats reacted with a complex repertoire of social behaviours and the intensity of their response differed significantly between stimulus categories. Stronger reactions were shown towards echolocation calls of unfamiliar conspecifics than towards heterospecifics and white noise. To our knowledge, this is the first time that bats have been found to react to echolocation calls with a suite of social behaviours. Our results also provide the first experimental evidence for acoustical differentiation by bats between familiar and unfamiliar conspecifics, and of heterospecifics. Analysis of echolocation calls confirmed significant individual differences between echolocation calls. In addition, we found a nonsignificant trend towards group signatures in echolocation calls of N. albiventris. We suggest that echolocation calls used during orientation may also communicate species identity, group affiliation and individual identity. Our study highlights the communicative potential of sonar signals that have previously been categorized as cues in animal social systems. Ó
Behavioral Ecology and Sociobiology, 2010
Many bat species regularly need to find new day roosts as they require numerous shelters each breeding season. It has been shown that bats exchange information about roosts among colony members, and use echolocation and social calls of conspecifics in order to find roosts. However, it is unclear if wild bats discriminate between social calls of conspecifics and other bat species while searching for roosts. Furthermore, the extent that bats are attracted to potential roosts by each of these two call types is unknown. We present a field experiment showing that social calls of conspecifics and other bat species both attract bats to roosts. During two summers, we played back social calls of Bechstein's bats (Myotis bechsteinii) and Natterer's bats (Myotis nattereri) from different bat boxes that can serve as roosts for these species. All experimental bat boxes were monitored with infrared video to identify the approaching bat species. Three species (M. bechsteinii, M. nattereri, and Plecotus auritus) approached the boxes significantly more often during nights when bat calls were played compared to nights without playbacks. Bechstein's bats and Natterer's bats were both more attracted to social calls of conspecifics than of the other species, whereas P. auritus did not discriminate between calls of either Myotis species. Only Bechstein's bats entered experimental boxes and only at times when calls from conspecifics were played. Our findings show that wild bats discriminate between social calls of conspecifics and other bat species although they respond to both call types when searching for new roosts.
Greater spear-nosed bats give group-distinctive calls
Behavioral Ecology and Sociobiology, 1997
Individually distinctive vocalizations are ubiquitous; however, group distinctive calls have rarely been demonstrated. Under some conditions, selection should favor calls indicating social group membership in animals that forage in groups. Greater spear-nosed bats (Phyllostomus hastatus) give calls that appear to facilitate recognition of social group mates who are unrelated. Females give loud broadband (4-18 kHz) vocalizations termed screech calls when departing on foraging trips and at foraging sites. Screech calls help to establish foraging groups among social group members, and to maintain contact over the long distances they travel while foraging. I test two hypotheses about how screech calls may be structured to convey caller identity. Individual calls may be distinct and group members may learn to recognize each individual's calls and to associate the individual with the social group. Alternatively, groups may give distinct calls and individuals within groups may share call characteristics. To test these hypotheses I conducted multivariate acoustic analysis of multiple calls from 28 bats from three social groups. Although the ubiquity of individually distinctive calls in other taxa makes this result more likely, the results reveal that group calls are highly distinctive. Individual bats within groups are statistically indistinguishable. Calls appear to decrease slightly in frequency as bats age. Call convergence among unrelated group mates implies vocal learning in this species.
Behavioral Ecology and Sociobiology, 2011
Contact calls are utilized by several bird and mammal species to maintain group cohesion and coordinate group movement. From a signal design perspective, contact calls typically exhibit acoustic features that make them easily localizable and encode information about individual or group identity. Pallid bats (Antrozous pallidus) are unusual among vespertilionids in that they often emit a loud, partially audible frequency-modulated social call several times in rapid succession while in flight. This call appears to function as a contact call in that it is frequently given when bats return from foraging and perform circular flights before entering a crevice roost. However, the degree to which pallid bats respond to the calls of conspecifics and what information is provided in the call is unknown. Thus, the goal of this study was to investigate pallid bat calling behavior to determine if calls attract roostmates or elicit responses from them and provide sufficient information for individual recognition. In playback studies, we found that contact calls, elicit calls, and approaches and that free-flying bats respond more to familiar than unfamiliar calls. In addition, analysis of frequency and temporal measurements of calls collected from multiple sites and spectral cross correlation analysis of calls recorded from the same radio-tagged bats on multiple evenings revealed that the frequency pattern of contact calls is highly repeatable over time within individuals but exhibits significant differences among individuals. Thus, contact call structure appears to be unique to individuals and stable through time, which makes these calls well-suited for roostmate recognition.
Social calls coordinate foraging in greater spear-nosed bats
Animal Behaviour, 1998
The function of social calls emitted by foraging bats has received little study. Here we use observations of free-ranging greater spear-nosed bats, Phyllostomus hastatus, and field playbacks to determine whether audible, broad-band 'screech' calls attract mates, warn conspecifics or influence access to food. Five lines of evidence suggest that screech calls enable adult females from the same roosting group to fly together from the day roost to feeding sites.
Behavioral Ecology and Sociobiology, 2017
Animals can gain important information by attending to the signals and cues of other animals in their environment, with acoustic information playing a major role in many taxa. Echolocation call sequences of bats contain information about the identity and behaviour of the sender which is perceptible to close-by receivers. Increasing evidence supports the communicative function of echolocation within species, yet data about its role for interspecific information transfer is scarce. Here, we asked which information bats extract from heterospecific echolocation calls during foraging. In three linked playback experiments, we tested in the flight room and field if foraging Myotis bats approached the foraging call sequences of conspecifics and four heterospecifics that were similar in acoustic call structure only (acoustic similarity hypothesis), in foraging ecology only (foraging similarity hypothesis), both, or none. Compared to the natural prey capture rate of 1.3 buzzes per minute of bat activity, our playbacks of foraging sequences with 23–40 buzzes/min simulated foraging patches with significantly higher profitability. In the flight room, M. capaccinii only approached call sequences of con-specifics and of the heterospecific M. daubentonii with similar acoustics and foraging ecology. In the field, M. capaccinii and M. daubentonii only showed a weak positive response to those two species. Our results confirm information transfer across species boundaries and highlight the importance of context on the studied behaviour, but cannot resolve whether information transfer in trawling Myotis is based on acoustic similarity only or on a combination of similarity in acoustics and foraging ecology. Significance statement Animals transfer information, both voluntarily and inadvertently , and within and across species boundaries. In echolocating bats, acoustic call structure and foraging ecology are linked, making echolocation calls a rich source of information about species identity, ecology and activity of the sender, which receivers might exploit to find profitable foraging grounds. We tested in three lab and field experiments if information transfer occurs between bat species and if bats obtain information about ecology from echolocation calls. Myotis capaccinii/daubentonii bats approached call play-backs, but only those from con-and heterospecifics with similar call structure and foraging ecology, confirming interspe-cific information transfer. Reactions differed between lab and field, emphasising situation-dependent differences in animal behaviour, the importance of field research, and the need for further studies on the underlying mechanism of information transfer and the relative contributions of acoustic and ecological similarity.
Bats adjust echolocation and social call design as a response to urban environments
Frontiers in Ecology and Evolution
Behavioral traits play a major role in the successful adaptation of wildlife to urban conditions. We investigated and compared the acoustic behavior of free ranging bats in rural (Havelland, Brandenburg) and urban (Berlin city center) green areas (n = 6 sites) to assess possible effects of urbanization on bat vocalizations using automated real-time recordings from May to October 2020 and 2021. We show that foraging and social call activity of commonly occurring bat species was lower in urban areas compared to rural areas. We present data on rural-urban variation in acoustic parameters of echolocation and Type D social calls (produced during flight) using the example of the common pipistrelle Pipistrellus pipistrellus. Calls from urban sites revealed significantly higher end and peak frequencies compared to rural site calls. In addition, urban social calls present a higher degree of complexity as they structurally differed from rural social calls with regard to assemblage and number ...
2014
Mutual recognition is the product of species coexistence, and has direct effects on survival and reproduction of animals. Bats are able to discriminate between sympatric different heterospecifics based on their echolocation calls, which has been shown both in free-flying and captive bats. To date, however, the factors that may determine the behavioral responses of bats to echolocation calls from sympatric heterospecifics have rarely been tested, especially under wellcontrolled conditions in captive bats. Hence, we aimed at tackling this question by performing playback experiments (habituation-dishabituation) with three horseshoe bat species within the constant-frequency bat guild, which included bigeared horseshoe bats (Rhinolophus macrotis), Blyth's horseshoe bats (Rhinolophus lepidus), and Chinese horseshoe bats (Rhinolophus sinicus). We studied the behavioral responses of these three species to echolocation calls of conspecifics, to other two species, and to another heterospecifics bat, Stoliczka's trident bat (Asellisus stoliczkanus), which also belongs to this guild. We found that the three rhinolophid species displayed a series of distinct behaviors to heterospecific echolocation but few to conspecific calls after habituation, suggesting that they may have been able to discriminate sympatric heterospecific echolocation calls from those of conspecifics. Interestingly, the behavioral responses to heterospecific calls were positively correlated with the interspecific overlap index in trophic niche, whereas call design had only a minor effect. This implies that the behavioral responses of these bats to heterospecific echolocation calls may be related to the degree of interspecific food competition.