Genetic analysis of hypertrophic cardiomyopathy phenocopies (original) (raw)

Hypertrophic Cardiomyopathy: The Molecular Genetics

Faridpur Medical College Journal, 2020

Hypertrophic Cardiomyopathy (HCM) is the common monogenic form familial pathological cardiac hypertrophy. HCM is an important cause of sudden cardiac death in the young adult and a major cause of morbidity in the elderly. We discuss here the molecular genetics and recent advances in the molecular genetics of HCM. HCM became the first cardiac disease for which a molecular genetic mechanism was identified. More than 100 mutations in nine genes, that encoding sarcomeric proteins have been identified in patients with HCM, which had led to the belief that HCM is a disease of contractile sarcomeric proteins of the cardiac muscle. Approximately two-thirds of all HCM cases are caused by the mutation of the myosin heavy chain (MyHC), cardiac troponin T (cTnT) and myosin binding protein-C (MyBP-C). Genotype-phenotype correlation studies suggest that mutations in the MyHC gene are associated with more extensive hypertrophy and a higher risk of SCD as compared to mutations in genes coding for o...

Genetic Basis of Hypertrophic Cardiomyopathy: From Bench to the Clinics

Journal of Cardiovascular Electrophysiology, 2007

Genetic Basis of Hypertrophic Cardiomyopathy. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disorder that characterized by marked thickening of the left ventricular wall that occurs in the absence of increased external load. HCM is the most common cause of sudden cardiac death under 35 years and in addition causes heart failure. HCM is usually inherited as an autosomal dominant mutation in genes that encode protein constituents of the sarcomere. To date, more than 450 different mutations have been identified within 13 myofilament-related genes. This review focuses current research involved in the discovery of other causative genes, investigation of the mechanisms by which sarcomere genes mutations produce hypertrophy and arrhythmia, and identification of modifying factors that influence clinical expression in HCM patients. The clinical implications of molecular advances in HCM are discussed.

Sarcomeric hypertrophic cardiomyopathy: Genetic profile in a Portuguese population

Revista Portuguesa de Cardiologia, 2012

Background: Sarcomeric hypertrophic cardiomyopathy has heterogeneous phenotypic expressions, of which sudden cardiac death is the most feared. A genetic diagnosis is essential to identify subjects at risk in each family. The spectrum of disease-causing mutations in the Portuguese population is unknown. Methods: Seventy-seven unrelated probands with hypertrophic cardiomyopathy were systematically screened for mutations by PCR and sequencing of five sarcomeric genes: MYBPC3, MYH7, TNNT2, TNNI3 and MYL2. Familial cosegregation analysis was performed in most patients. Results: Thirty-four different mutations were identified in 41 (53%) index patients, 71% with familial hypertrophic cardiomyopathy. The most frequently involved gene was MYBPC3 (66%) with 22 different mutations (8 novel) in 27 patients, followed by MYH7 (22%), TNNT2 (12%) and TNNI3 (2.6%). In three patients (7%), two mutations were found in MYBPC3 and/or MYH7. Additionally, 276 relatives were screened, leading to the identification of a mean of three other affected relatives for each pedigree with the familial form of the disease. Conclusions: Disease-associated mutations were identified mostly in familial hypertrophic cardiomyopathy, corroborating the idea that rarely studied genes may be implicated in sporadic forms. Private mutations are the rule, MYBPC3 being the most commonly involved gene. Mutations in MYBPC3 and MYH7 accounted for most cases of sarcomere-related disease. Multiple mutations in these genes may occur, which highlights the importance of screening both. The detection of novel mutations strongly suggests that all coding regions should be systematically screened. Genotyping in hypertrophic cardiomyopathy enables a more precise diagnosis of the disease, with implications for risk stratification and genetic counseling.

Molecular genetics of hypertrophic cardiomyopathy

Current cardiology reports, 2000

Hypertrophic cardiomyopathy (HCM), a serious and often tragic disorder, is characterized by hypertrophy of the interventricular septum and left ventricular wall, hypercontractile systolic function with diastolic dysfunction, and in some cases, left ventricular outflow tract obstruction. On histopathologic examination, myofiber disarray is common. The genes for familial cases of hypertrophic cardiomyopathy are known to encode members of the sarcomere and to date nine genes have been identified (beta-myosin heavy chain, alpha-tropomyosin, cardiac troponin T, troponin I, myosin binding protein-C, regulatory myosin light chain, essential myosin light chain, cardiac actin, and titin) for this genetically and clinically heterogeneous disease. In this review the genetic basis of HCM is discussed.

Spectrum and clinical manifestations of mutations in genes responsible for hypertrophic cardiomyopathy

Acta cardiologica, 2012

Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance. It is caused by mutations in the genes coding for structural and/or regulatory proteins found in the sarcomere of cardiomyocytes. A group of genes, including the heavy chain of beta-myosin (MYH7), myosin binding protein C (MYBPC3), cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) are frequently affected by causal mutations. While exact mutation frequency data has been obtained for various populations, no screening has been reported for Central European populations. We performed a complete sequencing of MYH7, MYBPC3, TNNI3 and TNNT2 genes in 100 HCM patients. We discovered mutations in a total of 40 patients (40%), including 4 patients with double mutations. A total of 35 different mutation types were detected, of which 17 were novel. The contributions from individual genes were: 24 mutations in MYBPC3 (54.5%), 14 in MYH7 (31.8%), 4 in TNNI3 (9%) and 2 mutations in TNNT2 (4.5%)...

Significance of Sarcomere Gene Mutations Analysis in the End-Stage Phase of Hypertrophic Cardiomyopathy

The American Journal of Cardiology, 2014

End-stage hypertrophic cardiomyopathy (ES-HC) has an ominous prognosis. Whether genotype can influence ES-HC occurrence is unresolved. We assessed the spectrum and clinical correlates of HC-associated mutations in a large multicenter cohort with end-stage ES-HC. Sequencing analysis of 8 sarcomere genes (MYH7, MYBPC3, TNNI3, TNNT2, TPM1, MYL2, MYL3, and ACTC1) and 2 metabolic genes (PRKAG2 and LAMP2) was performed in 156 ES-HC patients with left ventricular (LV) ejection fraction (EF) <50%. A comparison among mutated and negative ES-HC patients and a reference cohort of 181 HC patients with preserved LVEF was performed. Overall, 131 mutations (36 novel) were identified in 104 ES-HC patients (67%) predominantly affecting MYH7 and MYBPC3 (80%). Complex genotypes with double or triple mutations were present in 13% compared with 5% of the reference cohort (p [ 0.013). The distribution of mutations was otherwise indistinguishable in the 2 groups. Among ES-HC patients, those presenting at first evaluation before the age of 20 had a 30% prevalence of complex genotypes compared with 19% and 21% in the subgroups aged 20 to 59 and ‡60 years (p [ 0.003). MYBPC3 mutation carriers with ES-HC were older than patients with MYH7, other single mutations, or multiple mutations (median 41 vs 16, 26, and 28 years, p £0.001). Outcome of ES-HC patients was severe irrespective of genotype. In conclusion, the ES phase of HC is associated with a variable genetic substrate, not distinguishable from that of patients with HC and preserved EF, except for a higher frequency of complex genotypes with double or triple mutations of sarcomere genes.

Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives

Human Mutation, 2009

The American Heart Association (AHA) recommends family screening for hypertrophic cardiomyopathy (HCM). We assessed the outcome of family screening combining clinical evaluation and screening for sarcomere gene mutations in a cohort of 90 Danish HCM patients and their close relatives, in all 451 persons. Index patients were screened for mutations in all coding regions of 10 sarcomere genes (MYH7, MYL3, MYBPC3, TNNI3, TNNT2, TPM1, ACTC, CSRP3, TCAP, and TNNC1) and five exons of TTN. Relatives were screened for presence of minor or major diagnostic criteria for HCM and tracking of DNA variants was performed. In total, 297 adult relatives (>18 years) (51.2%) fulfilled one or more criteria for HCM. A total of 38 HCM-causing mutations were detected in 32 index patients. Six patients carried two disease-associated mutations. Twenty-two mutations have only been identified in the present cohort. The genetic diagnostic yield was almost twice as high in familial HCM (53%) vs. HCM of sporadic or unclear inheritance (19%). The yield was highest in families with an additional history of HCM-related clinical events. In relatives, 29.9% of mutation carriers did not fulfil any clinical diagnostic criterion, and in 37.5% of relatives without a mutation, one or more criteria was fulfilled. A total of 60% of family members had no mutation and could be reassured and further follow-up ceased. Genetic diagnosis may be established in approximately 40% of families with the highest yield in familial HCM with clinical events. Mutation-screening was superior to clinical investigation in identification of individuals not at increased risk, where follow-up is redundant, but should be offered in all families with relatives at risk for developing HCM. Hum Mutat 0,1–8, 2008. © 2008 Wiley-Liss, Inc.