Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations (original) (raw)

Whether the 3D incompressible Euler and Navier–Stokes equations can develop a finite-time singularity from smooth initial data with finite energy has been one of the most long-standing open questions. We review some recent theoretical and computational studies which show that there is a subtle dynamic depletion of nonlinear vortex stretching due to local geometric regularity of vortex filaments. We also investigate the dynamic stability of the 3D Navier–Stokes equations and the stabilizing effect of convection. A unique feature of our approach is the interplay between computation and analysis. Guided by our local non-blow-up theory, we have performed large-scale computations of the 3D Euler equations using a novel pseudo-spectral method on some of the most promising blow-up candidates. Our results show that there is tremendous dynamic depletion of vortex stretching. Moreover, we observe that the support of maximum vorticity becomes severely flattened as the maximum vorticity increas...