Acetylcholine Receptor Gating at Extracellular Transmembrane Domain Interface: the "Pre-M1" Linker (original) (raw)

2007, The Journal of General Physiology

Charged residues in the β10–M1 linker region (“pre-M1”) are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational “wave.” We examined the effects of mutations to all five residues in pre-M1 (positions M207–P211) plus E45 in loop 2 in the mouse α1-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (Keq), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in Keq(67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Φ values for R209 (on the E45A background), L210, and E45...