Polymorphisms of the DNA Repair Gene XRCC1 and Lung Cancer Risk (original) (raw)

Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never- and ever-smokers

Lung Cancer, 2006

This case-control study examines the association between lung cancer and genetic polymorphisms in two base excision repair (BER) genes, XRCC1 and APEX1 and two genes involved in homologous recombination repair (HR), XRCC3 and NBS1. Never-smoking lung cancer patients were recruited, and also the next diagnosed ever-smoking case of the same gender and age group. Controls were recruited from the regional population register, frequency matched to cases by hospital catchment area, gender, age group and smoking category. As a result more than 70% of the study population were women. A total of 331 individuals were analysed. Presence of the XRCC1 399Gln allele was associated with a significantly decreased risk for lung cancer among non-smoking women (odds ratio (OR) 0.4, 95% confidence interval (CI) 0.2-0.9). No significant effect was seen with the APEX1 polymorphism. Women smokers carrying the XRCC3 241Met allele showed a significantly decreased risk for lung cancer (OR 0.3, CI 0.2-0.7). The NBS1 185Gln allele was significantly associated with an increased risk for lung cancer among non-smoking women (OR 2.2, CI 1.0-4.8) and low-dose smoking women (OR 4.8, CI 1.5-15.7). The protective effect of the variant XRCC3 241Met allele was strengthened when combined with the low-risk Glu185 allele of the NBS1 gene. Smokers (OR 0.38, CI 0.16-0.90) and women (OR 0.42, CI 0.21-0.85) with at least three low-risk alleles in these two HR genes showed a significantly decreased risk for lung cancer. Thus, in spite of a relatively small study population, this study, including a comparatively large number of never-smokers and women, presents several novel aspects on genetic susceptibility to lung cancer. Our results show that the genetic variation in XRCC1, XRCC3 and NBS1 influence lung cancer susceptibility among women, and that combinations of risk alleles in the two HR genes can enhance the effects.

DNA repair polymorphisms and cancer risk in non-smokers in a cohort study

Carcinogenesis, 2006

Environmental carcinogens contained in air pollution, such as polycyclic aromatic hydrocarbons, aromatic amines or N-nitroso compounds, predominantly form DNA adducts but can also generate interstrand cross-links and reactive oxygen species. If unrepaired, such lesions increase the risk of somatic mutations and cancer. Our study investigated the relationships between 22 polymorphisms (and their haplotypes) in 16 DNA repair genes belonging to different repair pathways in 1094 controls and 567 cancer cases (bladder cancer, 131; lung cancer, 134; oral-pharyngeal cancer, 41; laryngeal cancer, 47; leukaemia, 179; death from emphysema and chronic obstructive pulmonary disease, 84). The design was a case-control study nested within a prospective investigation. Among the many comparisons, few polymorphisms were associated with the diseases at the univariate analysis: XRCC1-399 Gln/Gln variant homozygotes [odds ratios (OR) ¼ 2.20, 95% confidence intervals (CI) ¼ 1.16-4.17] and XRCC3-241 Met/Met homozygotes (OR ¼ 0.51, 95% CI ¼ 0.27-0.96) and leukaemia. The recessive model in the stepwise multivariate analysis revealed a possible protective effect of XRCC1-399Gln/Gln in lung cancer (OR ¼ 0.22, 95% CI ¼ 0.05-0.98), and confirmed an opposite effect (OR ¼ 2.47, 95% CI ¼ 1.02-6.02) in the leukaemia group. Our results also suggest that the XPD/ERCC1-GAT haplotype may modulate leukaemia (OR ¼ 1.28, 95% CI ¼ 1.02-1.61), bladder cancer (OR ¼ 1.38, 95% CI ¼ 1.06-1.79) and possibly other cancer risks. Further investigations of the combined effects of polymorphisms within these DNA repair genes, smoking and other risk factors may help to clarify the influence of genetic variation in the carcinogenic process.

XRCC3 polymorphisms and risk of lung cancer

Cancer Letters, 2004

In a nested case-cohort study, we have investigated the occurrence of lung cancer in relation to polymorphisms in the double strand DNA repair gene XRCC3. Among 54,220 members of a Danish prospective cohort study aged 50-65 at entry, 265 lung cancer cases were identified and a sub-cohort, matched by age, sex and duration of smoking, comprising of 272 individuals was used for comparison. Ninety percent of both cases and comparison group were ever-smokers. Three previously studied polymorphisms; XRCC3 A4541G (5 0 UTR), A17893G (IVS5-14) and C18067T (T241M) were combined into haplotypes. The four most frequent haplotypes accounted for 98% of the genotypes. Homozygosity for the haplotype AAC was associated with a 4.91 times higher risk of lung cancer (confidence interval, 95% CIZ1.06-22.81) compared with the GAC haplotype. The polymorphism XRCC3 IVS6 C1571T was found to co-segregate with the AAC haplotype, and homozygous carriers of the variant T-allele had a 4.47 (CIZ1.34-14.96) times higher risk of lung cancer compared with homozygous carriers of the wild type allele. Our results indicate that XRCC3 IVS6 C1571T and the associated haplotype AAC are associated with relatively high risk of lung cancer. q

Polymorphisms in DNA Base Excision Repair Genes ADPRT and XRCC1 and Risk of Lung Cancer

Cancer Research

Adenosine diphosphate ribosyl transferase (ADPRT) and X-ray repair cross-complementing 1 (XRCC1) are two major DNA base excision repair (BER) proteins and act interactively in stimulating and executing BER processes. Polymorphisms of ADPRT Val762Ala and XRCC1 Arg399Gln have been associated with altered protein function and BER activity. This case-control study examined the contribution of these two polymorphisms, alone and in combination, or in interaction with smoking, to the risk of developing lung cancer. We estimated the risk of lung cancer associated with these polymorphisms in 1,000 cases and 1,000 cancer-free controls using logistic regression models. Subjects having the ADPRT Ala/Ala genotype had an odds ratio (OR) of 1.68 [95% confidence interval (95% CI), 1.27-2.23] compared with those having the Val/Val genotype. A greater than multiplicative joint effect between the ADPRT polymorphism and smoking was observed. The ORs (95% CI) of the Ala/Ala genotype for nonsmokers and s...

Smoking, DNA adducts and number of risk DNA repair alleles in lung cancer cases, in subjects with benign lung diseases and in controls

Journal of nucleic acids, 2010

Smoke constituents can induce DNA adducts that cause mutations and lead to lung cancer. We have analyzed DNA adducts and polymorphisms in two DNA repair genes, for example, XRCC1 Arg194Trp and Arg399Gln genes and XRCC3 Thr241Met gene, in 34 lung cancer cases in respect to 30 subjects with benign lung cancer disease and 40 healthy controls. When the study population was categorized in base to the number of risk alleles, adducts were significantly increased in individuals bearing 3-4 risk alleles (OR = 4.1 95% C.I. 1.28-13.09, P = .009). A significant association with smoking was noticed in smokers for more than 40 years carrying 3-4 risk alleles (OR = 36.38, 95% C.I. 1.17-1132.84, P = .040). A not statistically significant increment of lung cancer risk was observed in the same group (OR = 4.54, 95% C.I. 0.33-62.93, P = .259). Our results suggest that the analysis of the number of risk alleles predicts the interindividual variation in DNA adducts of smokers and lung cancer cases.

DNA Repair Gene XRCC1 Polymorphisms, Smoking, and Bladder Cancer Risk

Cancer Epidemiology Biomarkers Prevention, 2001

Bladder cancer is the sixth most common cancer in the United States. The main identified risk factor is cigarette smoking, which is estimated to contribute to up to 50% of new cases in men and 20% in women. Besides containing other carcinogens, cigarette smoke is a rich source of reactive oxygen species (ROS) that can induce a variety of DNA damage, some of which is repaired by the base excision repair (BER) pathway. The XRCC1 gene protein plays an important role in BER by serving as a scaffold for other repair enzymes and by recognizing single-strand DNA breaks. Three polymorphisms that induce amino acid changes have been found in codon 194 (exon 6), codon 280 (exon 9), and codon 399 (exon 10) of this gene. We tested whether polymorphisms in XRCC1 were associated with bladder cancer risk and whether this association was modified by cigarette smoking. Therefore, we genotyped for the three polymorphisms in 235 bladder cancer cases and 213 controls who had been frequency matched to cases on age, sex, and ethnicity. We found no evidence of an association between the codon 280 variant and bladder cancer risk [odds ratio (OR), 1.2; 95% confidence interval (CI), 0.6-2.6]. We found some evidence of a protective effect for subjects that carried at least one copy of the codon 194 variant allele relative to those homozygous for the common allele (OR, 0.59; 95% CI, 0.3-1.0). The combined analysis with smoking history suggested a possible gene-exposure interaction; however, the results were not statistically significant. Similarly, for the codon 399 polymorphism, our data suggested a protective effect of the homozygous variant genotype relative to carriers of either one or two copies of the common allele (OR, 0.70; 95% CI, 0.4-1.3), and provided limited evidence, albeit not statistically significant, for a gene-smoking interaction.

An analysis of single nucleotide polymorphisms of 125 DNA repair genes in the Texas genome-wide association study of lung cancer with a replication for the XRCC4 SNPs

DNA Repair, 2011

DNA repair genes are important for maintaining genomic stability and limiting carcinogenesis. We analyzed all single nucleotide polymorphisms (SNPs) of 125 DNA repair genes covered by the Illumina HumanHap300 (v1.1) BeadChips in a previously conducted genome-wide association study (GWAS) of 1,154 lung cancer cases and 1,137 controls and replicated the top-hits of XRCC4 SNPs in an independent set of 597 cases and 611 controls in Texas populations. We found that six of 20 XRCC4 SNPs were associated with a decreased risk of lung cancer with a P value of 0.01 or lower in the discovery dataset, of which the most significant SNP was rs10040363 (P for allelic test = 4.89 ×10 −4). Moreover, the data in this region allowed us to impute a potentially functional SNP rs2075685 (imputed P for allelic test = 1.3 ×10 −3). A luciferase reporter assay demonstrated that the rs2075685G>T change in the XRCC4 promoter increased expression of the gene. In the replication study of rs10040363, rs1478486, rs9293329, and rs2075685, however, only rs10040363 achieved a borderline association with a decreased risk of lung cancer in a dominant model (adjusted OR = 0.80, 95% CI = 0.62-1.03, P = 0.079). In the final combined analysis of both the Texas GWAS discovery and replication datasets, the strength of the association was increased for rs10040363 (adjusted OR = 0.77, 95% CI = 0.66-0.89, P dominant = 5×10 −4 and P for trend = 5×10 −4) and rs1478486 (adjusted OR = 0.82, 95% CI = 0.71 −0.94, P dominant = 6×10 −3 and P for trend = 3.5×10 −3). Finally, we conducted a meta-analysis of these XRCC4 SNPs with available data from published GWA studies of lung cancer with a total of 12,312 cases and 47,921 controls, in which none of these XRCC4 SNPs was associated with lung cancer risk. It appeared that rs2075685, although associated with increased expression of a reporter gene and lung cancer * To whom correspondence should be addressed.

Lung cancer risk and genetic polymorphisms in DNA repair pathways: a meta-analysis

Journal of nucleic acids, 2010

Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to lung cancer risk. We conducted a meta-analysis of epidemiologic studies on the association between genetic polymorphisms in both base excision repair and nucleotide excision repair pathways, and lung cancer. We found xeroderma pigmentosum complementation group A (XPA) G23A (odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.61-0.94), 8-oxoguanine DNA glycosylase 1 (OGG1) Ser326Cys (OR = 1.22, 95% CI = 1.02-1.45), and excision repair cross-complementing group 2 (ERCC2) Lys751Gln (OR = 1.27, 95% CI = 1.10-1.46) polymorphisms were associated with lung cancer risk. Considering the data available, it can be conjectured that if there is any risk association between a single SNP and lung cancer, the risk fluctuation will probably be minimal. Advances in the identification of new polymorphisms and in high-throughput genotyping techniques will facilitate the analysis of...

Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain

BMC Cancer, 2007

Background Polymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer. Nucleotide excision repair (NER), base excision repair (BER), and double-strand break repair (DSBR) are the main DNA repair pathways. We investigated the relationship between polymorphisms in two NER genes, XPC (poly (AT) insertion/deletion: PAT-/+) and XPD (Asp312Asn and Lys751Gln), the BER gene XRCC1 (Arg399Gln), and the DSBR gene XRCC3 (Thr241Met) and the risk of developing lung cancer. Methods A hospital-based case-control study was designed with 516 lung cancer patients and 533 control subjects, matched on ethnicity, age, and gender. Genotypes were determined by PCR-RFLP and the results were analysed using multivariate unconditional logistic regression, adjusting for age, gender and pack-years. Results Borderline association was found for XPC and XPD NER genes polymorphisms, while no association was ...

Polymorphisms/Haplotypes in DNA Repair Genes and Smoking: A Bladder Cancer Case-Control Study

Cancer Epidemiology Biomarkers & Prevention, 2005

Bladder cancer is associated with tobacco smoking and occupational exposure. The repair of DNA damage has a key role in protecting the genome from the insults of cancer-causing agents. We analyzed 13 polymorphisms in seven DNA repair genes belonging to different repair pathways [X-ray repair cross-complementing group 1 (XRCC1): 26304C>T, 26651A>G, 28152A>G; xeroderma pigmentosum-D (XPD): 23591A>G, 35931A>C; excision repair complementing defective in Chinese hamster, group 1 (ERCC1): 19007C>T; XRCC3 : 4541T>C, 17893A>G, 18067C>T; proliferating cell nuclear antigen (PCNA): 6084G>C; ERCC4: 30028C>T, 30147A>G; and XRCC2-31479A>G] in 317 incident bladder cancer patients and 317 controls. After adjustment for age and smoking, the PCNA-6084C variant was significantly associated with an increased risk of bladder cancer [CC + CG versus GG, odds ratio (OR), 1.61; 95% confidence interval (95% CI), 1.00-2.61], as well as the XRCC1-26651G variant (GG+AG versus AA: OR, 1.73; 95% CI, 1.17-2.56). After stratifying by smoking habits, an elevated risk for carriers of the XRCC3-18067T allele was detected both in current (TT versus CC: OR, 2.65; 95% CI, 1.21-5.80; CT versus CC: OR, 1.96; 95% CI, 1.09-3.52) and never smokers (TT versus CC: OR, 4.34; 95% CI, 1.14-16.46; CT versus CC: OR, 2.02; 95% CI, 0.72-5.66), whereas an opposite and slightly weaker effect was associated to the XRCC3-17893G allele in current smokers (GG versus AA: OR, 0.30; 95%CI, 0.11-0.82; AG versus AA: OR, 0.73; 95% CI, 0.42-1.27). XRCC3,XRCC1, ERCC4, and XPD-ERCC1 haplotype frequencies were estimated by the maximum likelihood method. The XRCC3-TAT haplotype was associated with an enhanced risk in the current smokers group (OR, 1.62; 95% CI, 1.15-2.29), whereas a reduction of the risk in the overall sample was observed in the presence of the XRCC3-TAC (OR, 0.69; 95% CI, 0.50-0.97). A significant protective effect of the XPD-ERCC1-ACC haplotype was observed among never smokers (OR, 0.16; 95% CI, 0.03-0.81). Our results suggest that polymorphisms and/or haplotypes in XRCC3, XRCC1, and PCNA genes and spanning XPD-ERCC1 region may modulate bladder cancer risk and that some of these effects may preferentially affect current smokers.