Dual Level Inhibition of E2F-1 Activity by Adeno-associated Virus Rep78 (original) (raw)
Related papers
Cancer research, 2002
Adeno-associated virus type 2 (AAV) is known to inhibit virally mediated oncogenic transformation. One of the early events of adenovirus (Ad) infection is the functional inactivation of cell cycle regulatory retinoblastoma (RB) family of proteins, which consists of retinoblastoma protein (pRB), p107, and p130. In an effort to understand the molecular basis of anti-oncogenic properties of AAV, we studied the effects of AAV expression on these proteins in cells infected with Ad. Western blot analysis showed that AAV interferes with the adenoviral-induced degradation and hyperphosphorylation of the pRB family of proteins in normal human fibroblasts as well as in HeLa and 293 cell lines. RNase protection assay showed enhanced expression of pocket protein gene by AAV expression. We also demonstrate that Rep proteins, the major AAV regulatory proteins, bind to E1A, the immediate early gene of Ad responsible for hyperphosphorylation and dissociation of pRB-E2F complex. This binding of AAV ...
Genes & Development, 1991
Recent experiments have shown that the cellular E2F transcription factor is found in complexes with cellular proteins and that one such complex contains the cyclin-A protein. Isolation of a cellular activity, which we term E2F-BF, can reconstitute the E2F-cyclin-A complex and has permitted a more detailed analysis of the mechanism of E1A dissociation. Through the analysis of a series of EIA mutants, we find that sequences in conserved region 1 (CR1) and conserved region 2 (CR2) are important for dissociation of the E2F complex, whereas amino-terminal sequences are not required. In contrast to the requirements for dissociation, only the CR1 sequences are required to block formation of the complex if E1A is added when the components are combined. We have also identified an activity, termed E2F-I, that inhibits E2F binding to DNA, again apparently through the formation of a complex with E2F. This inhibitory activity is also blocked by E1A, dependent on the same elements of the E1A protein that disrupt the interaction with E2F-BF. Because the E1A sequences that are important for releasing E2F from these interactions are also sequences necessary for oncogenesis, we suggest that this activity may be a critical component of the transforming activity of E1A.
A modified E2F-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses
Gene Therapy, 2009
The E2F-1 promoter has been used to confer tumorselective E1A expression in oncolytic adenoviruses. Tumor specificity is mainly conferred by a unique structure of E2F-responsive sites organized in palindromes. Binding of the E2F-pRb complex to these palindromes results in repression of transcription in normal cells. Owing to deregulation of the Rb/p16 pathway in tumor cells, binding of free E2F activates transcription and initiates an autoactivation loop involving E1A and E4-6/7. ICOVIR-7 is a new oncolytic adenovirus designed to increase the E2F dependency of E1A gene expression. It incorporates additional palindromes of E2F-responsive sites in an insulated E2F-1 promoter controlling E1A-D24. The E2F palindromes inhibited replication in normal cells, resulting in a low systemic toxicity at high doses in immunocompetent mice. The D24 deletion avoids a loop of E2F-mediated selfactivation in nontumor cells. Importantly, the additional E2F-binding hairpins boost the positive feedback loop on the basis of E1A-mediated transcriptional regulation of E4-6/7 turned on in cancer cells and increased antitumoral potency as shown in murine subcutaneous xenograft models treated by intravenous injection. These results suggest that the unique genetic combination featured in ICOVIR-7 may be promising for treating disseminated neoplasias.
Interaction of Adeno-associated Virus Rep78 with p53: Implications in Growth Inhibition1
Cancer Research, 1999
Adeno-associated virus (AAV) is a nonpathogenic, single-stranded DNA virus belonging to the parvoviridae family. Onco-suppressive properties of AAV against adenovirus, a DNA tumor virus, have been well documented. Rep78, a major regulatory protein of AAV, is believed to be responsible for its antioncogenic properties. Most DNA tumor viruses disturb the cell cycle pathways by essentially abrogating the functions of p53. Here we present evidence that AAV acts as an antiproliferative agent against adenovirus by protecting the adenoviral-mediated degradation of p53 as confirmed by both Western blot analysis and immunoprecipitation analysis with anti-p53 antibody. Coimmunoprecipitation experiments revealed that the AAV Rep78 is physically bound to p53 in vivo. Furthermore, the binding of purified p53 to the AAV Rep78 affinity column confirms their interaction. These results document for the first time that the antiproliferative effects of AAV against adenovirus are mediated, at least in part, by the interaction of AAV Rep78 with p53.
Adenovirus E1A Directly Targets the E2F/DP-1 Complex
Journal of Virology, 2011
Deregulation of the cell cycle is of paramount importance during adenovirus infection. Adenovirus normally infects quiescent cells and must initiate the cell cycle in order to propagate itself. The pRb family of proteins controls entry into the cell cycle by interacting with and repressing transcriptional activation by the E2F transcription factors. The viral E1A proteins indirectly activate E2F-dependent transcription and cell cycle entry, in part, by interacting with pRb and family members to free the E2Fs. We report here that an E1A 13S isoform can unexpectedly activate E2F-responsive gene expression independently of binding to the pRb family of proteins. We demonstrate that E1A binds to E2F/DP-1 complexes through a direct interaction with DP-1. E1A appears to utilize this binding to recruit itself to E2F-regulated promoters, and this allows the E1A 13S protein, but not the E1A 12S protein, to activate transcription independently of interaction with pRb. Importantly, expression of E1A 13S, but not E1A 12S, led to significant enhancement of E2F4 occupancy of E2F sites of two E2F-regulated promoters. These observations identify a novel mechanism by which adenovirus deregulates the cell cycle and suggest that E1A 13S may selectively activate a subset of E2F-regulated cellular genes during infection.
Cancer Gene Therapy, 2004
Apoptotic pathways are initiated as a cellular defense mechanism to eliminate adenovirus-infected cells. We have investigated how E1A-induced apoptosis interferes with viral replication in cancer cells. We found that E1B19K alone can efficiently suppress E1Ainduced apoptosis in cancer cells. Viruses deleted for both E1B19K and E1B55K resulted in cellular DNA degradation. However, less than 20% of human lung cancer cells infected with a virus deleted for both E1B19K and E1B55 K had evidence of chromatin condensation and multiple-micronuclei formation (apoptotic hallmarks); these cells could not produce infectious viral particles. The majority of cancer cells infected with viruses deleted for the entire E1b gene did not undergo extended apoptosis and produced abundant viral progeny. Thus, only a fraction of cancer cells underwent apoptosis and did not allow E1b-deleted viruses to replicate, while the majority of cancer cells were resistant to E1A-induced apoptosis and could support virus-selective replication. The results of this study imply that, in addition to inhibiting E1A-induced apoptosis, E1B proteins may contribute other important roles in the viral life cycle. Our results also suggest that combining virus-induced apoptosis and selective viral replication into one vector will be a novel approach to destroy cancer cells.
Journal of virology, 1997
The transformation-defective Vero cell host range mutant CS-1 of the highly oncogenic adenovirus type 12 (Ad12) (Ad12-CS-1) has a 69-bp deletion in the early region 1A (E1A) gene that removes the carboxy-terminal half of conserved region 2 and the amino-terminal half of the Ad12-specific so-called spacer that seems to play a pivotal role in the oncogenicity of the virus. Despite its deficiency in immortalizing and transforming primary rodent cells, we found that the E1A 13S protein of Ad12-CS-1 retains the ability to bind p105-RB, p107, and p130 in nuclear extract binding assays with glutathione S-transferase-E1A fusion proteins and Western blot analysis. Like wild-type E1A, the mutant protein was able to dissociate E2F from retinoblastoma-related protein-containing complexes, as judged from gel shift experiments with purified 12S and 13S proteins from transfection experiments with an E1A expression vector or from infection with the respective virus. Moreover, in transient expressio...