Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata Link et Otto (original) (raw)

1999, Planta

The callose synthase (CalS) activity of membrane preparations from cultured Nicotiana alata Link & Otto pollen tubes is increased several-fold by treatment with trypsin in the presence of digitonin, possibly due to activation of an inactive (zymogen) form of the enzyme. Active and inactive forms of CalS are also present in stylar-grown tubes. Callose deposition was first detected immediately after germination of pollen grains in liquid medium, at the rim of the germination aperture. During tube growth the 3-linked glucan backbone of callose was deposited at an increasing rate, reaching a maximum of 65 mg h−1 in tubes grown from 1 g pollen. Callose synthase activity was first detected immediately after germination, and then also increased substantially during tube growth. Trypsin caused activation of CalS throughout a 30-h time course of tube growth, but the degree of activation was higher for younger pollen tubes. Over a 10-fold range of callose deposition rates, the assayed CalS activity was sufficient to account for the rate of callose deposition without trypsin activation, implying that the form of CalS active in isolated membranes is responsible for callose deposition in intact pollen tubes. Sucrose-density-gradient centrifugation separated a lighter, intracellular membrane fraction containing only inactive CalS from a heavier, plasma-membrane fraction containing both active and inactive CalS, with younger pollen tubes containing relatively more of the inactive intracellular enzyme. The increasing rate of callose deposition during pollen-tube growth may thus be caused by the transport of inactive forms of CalS from intracellular membranes to the plasma membrane, followed by the regulated activation of these inactive forms in this final location.

Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube

Plant Cell Reports, 2022

Key message The article concerns the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in the pollen tube. Results confirmed this association and immunogold labeling showed a colocalization. Abstract Callose is a cell wall polysaccharide involved in fundamental biological processes, from plant development to the response to abiotic and biotic stress. To gain insight into the deposition pattern of callose, it is important to know how the enzyme callose synthase is regulated through the interaction with the vesicle-cytoskeletal system. Actin filaments likely determine the long-range distribution of callose synthase through transport vesicles but the spatial/biochemical relationships between callose synthase and microtubules are poorly understood, although experimental evidence supports the association between callose synthase and tubulin. In this manuscript, we further investigated the association between callose synthase and microtubule...

Uridine Diphosphate Glucose Metabolism and Callose Synthesis in Cultured Pollen Tubes of Nicotiana alata Link et Otto

Plant physiology, 1994

Membrane preparations from cultured pollen tubes of Nicotiana alata Link et Otto contain a Ca2+ -independent (1-3)-[beta]-D-glucan (callose) synthase activity that has a low affinity for UDP-glucose, even when activated by treatment with trypsin (H. Schlupmann, A. Basic, S.M. Read [1993] Planta 191: 470-481). Therefore, we investigated whether UDP-glucose was a likely substrate for callose synthesis in actively growing pollen tubes. Deposition of (1-3)-[beta]-glucan occurred at a constant rate, 1.4 to 1.7 nmol glucose min-1, in tubes from 1 mg of pollen from 3 h after germination; however, the rate of incorporation of radioactivity from exogenous [14C]-sucrose into wall polymers was not constant, but increased until at least 8 h after germination, probably due to decreasing use of internal reserves. UDP-glucose was a prominent ultraviolet-absorbing metabolite in pollen-tube extracts, with 1.6 nmol present in tubes from 1 mg of pollen, giving a calculated cytoplasmic concentration of...

Sucrose concentration in the growth medium affects the cell wall composition of tobacco pollen tubes

Plant reproduction, 2014

The cell wall of pollen tubes is organized in both spatial and temporal order to allow the pollen tube to grow according to external conditions. The deposition of methyl-esterified and acid pectins in addition to callose/cellulose occurs according to a series of temporally succeeding events. In this work, we attempted to determine how the composition of the external growth medium (in terms of osmolarity) could affect the deposition of cell wall components. Pollen tubes of tobacco were grown in a hypotonic medium and then analyzed for the distribution of pectins and callose/cellulose [as well as for the distribution of the enzyme callose synthase (CALS)]. The data indicate that pollen tubes grown in a hypotonic medium show changes of the initial growth rate followed by modification of the deposition of acid pectins and, to a lesser extent, of CALS. These observations indicate that, under the osmolarity determined by the growth medium, pollen tubes adapt their cell wall to the changin...

Callose plug deposition patterns vary in pollen tubes of Arabidopsis thaliana ecotypes and tomato species

2012

Background The pollen grain contains the male gametophyte that extends a pollen tube that grows through female tissues in order to deliver sperm to the embryo sac for double fertilization. Growing pollen tubes form periodic callose plugs that are thought to block off the older parts of the tube and maintain the cytoplasm near the growing tip. The morphology of callose plugs and the patterns of their deposition were previously shown to vary among species, but variation within a species had not been examined.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.