Operator-Based Preconditioning of Stiff Hyperbolic Systems (original) (raw)
Related papers
Preconditioned implicit solution of linear hyperbolic equations with adaptivity
Journal of Computational and Applied Mathematics, 2004
This paper describes a method for solving hyperbolic partial di erential equations using an adaptive grid: the spatial derivatives are discretised with a ÿnite volume method on a grid which is structured and partitioned into blocks which may be reÿned and dereÿned as the solution evolves. The solution is advanced in time via a backward di erentiation formula. The discretisation used is second-order accurate and stable on Cartesian grids. The resulting system of linear equations is solved by GMRES at every time-step with the convergence of the iteration being accelerated by a semi-Toeplitz preconditioner. The e ciency of this preconditioning technique is analysed and numerical experiments are presented which illustrate the behaviour of the method on a parallel computer.
Multigrid and preconditioning strategies for implicit PDE solvers for degenerate parabolic equations
2009
The novel contribution of this paper relies in the proposal of a fully implicit numerical method designed for nonlinear degenerate parabolic equations, in its convergence/stability analysis, and in the study of the related computational cost. In fact, due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required and every step implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate iterative or multi-iterative solvers, with special attention to preconditioned Krylov methods and to multigrid procedures: in particular we investigate the mutual benefit of combining in various ways suitable preconditioners with V-cycle algorithms. Numerical experiments in one and two spatial dimensions for the validation of our multi-facet analysis complement this contribution.
Analysis of Multigrid Preconditioning for Implicit PDE Solvers for Degenerate Parabolic Equations
Siam Journal on Matrix Analysis and Applications, 2011
In this paper an implicit numerical method designed for nonlinear degenerate parabolic equations is proposed. A convergence analysis and the study of the related computational cost are provided. In fact, due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required. The chosen scheme is the Newton method and its convergence is proven under mild assumptions. Every step of the Newton method implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate multigrid preconditioned Krylov methods. Numerical experiments for the validation of our analysis complement this contribution.
SIAM Journal on Scientific Computing, 2013
The one-fluid visco-resistive MHD model provides a description of the dynamics of a charged fluid under the influence of an electromagnetic field. This model is strongly coupled, highly nonlinear, and characterized by physical mechanisms that span a wide range of interacting time scales. Solutions of this system can include very fast component time scales to slowly varying dynamical time scales that are long relative to the normal modes of the model equations. Fully implicit time stepping is attractive for simulating this type of wide-ranging physical phenomena. However, it is essential that one has effective preconditioning strategies so that the overall fully implicit methodology is both efficient and scalable. In this paper, we propose and explore the performance of several candidate block preconditioners for this system. One of these preconditioners is based on an operator-split approximation. This method reduces the 3 × 3 system (momentum, continuity, and magnetics) into two 2 × 2 operators: a Navier-Stokes operator (momentum and continuity) and a magnetics-velocity operator (momentum and magnetics) which takes into account the critical Lorentz force coupling. Using previously developed preconditioners for Navier-Stokes, and an initial Schur-complement approximation for the magnetics-velocity system, we show that the split preconditioner is scalable and competitive with other preconditioners, including a fully coupled algebraic multigrid method.
SIAM Journal on Scientific Computing
Runge-Kutta (RK) schemes, especially Gauss-Legendre and some other fully implicit RK (FIRK) schemes, are desirable for the time integration of parabolic partial differential equations due to their A-stability and high-order accuracy. However, it is significantly more challenging to construct optimal preconditioners for them compared to diagonally implicit RK (or DIRK) schemes. To address this challenge, we first introduce mathematically optimal preconditioners called block complex Schur decomposition (BCSD), block real Schur decomposition (BRSD), and block Jordan form (BJF), motivated by block-circulant preconditioners and Jordan form solution techniques for IRK. We then derive an efficient, near-optimal singly-diagonal approximate BRSD (SABRSD) by approximating the quasi-triangular matrix in real Schur decomposition using an optimized upper-triangular matrix with a single diagonal value. A desirable feature of SABRSD is that it has comparable memory requirements and factorization (or setup) cost as singly DIRK (SDIRK). We approximate the diagonal blocks in these preconditioning techniques using an incomplete factorization with (near) linear complexity, such as multilevel ILU, ILU(0), or a multigrid method with an ILU-based smoother. We apply the block preconditioners in right-preconditioned GMRES to solve the advection-diffusion equation in 3D using finite element and finite difference methods. We show that BCSD, BRSD, and BJF significantly outperform other preconditioners in terms of GMRES iterations, and SABRSD is competitive with them and the prior state of the art in terms of computational cost while requiring the least amount of memory.
Robust Preconditioners for Incompressible MHD Models
In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is not only applicable to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD sy...
Numerical Methods for Partial Differential Equations
We devise a new-class of asymptotic-preserving Godunov-type numerical schemes for hyperbolic systems with stiff and non-stiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator-splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small and in-between values of ε and second, to make optional the choice of the numerical scheme in the asymptotic regime ε tends to zero. The latter property may be of particular interest to make easier and more efficient the coupling at a fixed spatial interface of two models involving very different values of ε.
High-Order Implicit-Explicit Multi-block Time-stepping Method for Hyperbolic PDEs
52nd Aerospace Sciences Meeting, 2014
This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.
Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs
Modeling, Identification and Control: A Norwegian Research Bulletin, 2006
Recently, the authors introduced a preconditioner for the linear systems that arise from fully implicit Runge-Kutta time stepping schemes applied to parabolic PDEs . The preconditioner was a block Jacobi preconditioner, where each of the blocks were based on standard preconditioners for low-order time discretizations like implicit Euler or Crank-Nicolson. It was proven that the preconditioner is optimal with respect to the timestep and the discretization parameter in space. In this paper we will improve the convergence by considering other preconditioners like the upper and the lower block Gauss-Seidel preconditioners, both in a left and right preconditioning setting. Finally, we improve the condition number by using a generalized Gauss-Seidel preconditioner.