Asymptotic Curves on Surfaces in ℝ 5 (original) (raw)

Abstract

We study asymptotic curves on generically immersed surfaces in ℝ5. We characterize asymptotic directions via the contact of the surface with flat objects (k-planes, k = 1 - 4), give the equation of the asymptotic curves in terms of the coefficients of the second fundamental form and study their generic local configurations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (44)

  1. V. I. Arnol'd, S. M. Guseȋn-Zade and A. N. Varchenko, Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts. Monographs in Mathematics, 82. Birkhuser, 1985.
  2. T. Banchoff, T. Gaffney and C. McCrory, Cusps of Gauss Mappings. Research Notes in Mathe- matics, 55. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.
  3. J. W. Bruce, A note on differential equations of degree greater than one and wavefront evolution. Bull. London Math. Soc. 16 (1984), 139-144.
  4. J. W. Bruce, Generic geometry, transversality and projections. J. London Math. Soc. (2) 49 (1994), 183-194.
  5. J. W. Bruce, P. J. Giblin and F. Tari, Families of surfaces: height functions, Gauss maps and duals. In W.L. Marar (Ed.), Real and Complex Singularities, Pitman Research Notes in Mathe- matics, Vol. 333, pp. 148-178 (1995).
  6. J. W. Bruce, P. J. Giblin and F. Tari, Families of surfaces: height functions and projections to plane. Math. Scand. 82 (1998), 165-185.
  7. J. W. Bruce and A. C. Nogueira, Surfaces in R 4 and duality. Quart. J. Math. Oxford 49 (1998), 433-443.
  8. J. W. Bruce and M. C. Romero-Fuster, Duality and orthogonal projections of curves and surfaces in euclidean 3-space. Quart. J. Math. Oxford 42 (1991), 433-441.
  9. J. W. Bruce and F. Tari, On binary differential equations. Nonlinearity 8 (1995), 255-271.
  10. J. W. Bruce and V. M. Zakalyukin, Sectional singularities and geometry of families of planar quadratic forms. Trends in singularities, 83-97, Trends Math., Birkhuser, Basel, 2002.
  11. Th. Bröcker, Differentiable germs and catastrophes. LMS Lecture Note Series, No. 17. Cambridge University, 1975.
  12. M. P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.
  13. S. I. R. Costa, Aplicações não singulares de ordem p. Doctoral Thesis, University of Campinas, 1982.
  14. A. A. Davydov, Qualitative control theory. Translations of Mathematical Monographs 142, AMS, Providence, RI, 1994.
  15. Y. Eliašberg and N. Mishachev, Introduction to the h-Principle. Graduate Studies in Mathemat- ics, 48. American Mathematical Society, Providence, RI, 2002.
  16. E. A. Feldman, Geometry of immersions I. Trans. Amer. Math. Soc. 120 (1965), 185-224.
  17. R. A. Garcia, D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, Inflection Points and Topology of Surfaces in 4-space. Trans. Amer. Math. Soc. 352 (2000), 3029-3043.
  18. M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Graduate Texts in Mathematics, Vol. 14. Springer-Verlag, New York-Heidelberg, 1973.
  19. D. H. Gottlieb, A de Moivre like formula for fixed point theory. Cont. Math. 72 (1988), 99-105.
  20. M. L. Gromov and Y. Eliašberg, Elimination of singularities of smooth mappings. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 600-626.
  21. H. Hopf, Differential geometry in the large. Lecture Notes in Mathematics, 1000. Springer-Verlag, Berlin, 1989.
  22. S. Izumiya, D. Pei and M. C. Romero-Fuster, The horospherical geometry of surfaces in Hyper- bolic 4-space. Israel J. Math. 154 (2006), 361-379.
  23. S. Izumiya, D-H. Pei and T. Sano, Singularities of hyperbolic Gauss maps. Proc. London Math. Soc. 86 (2003), 485-512.
  24. N. P. Kirk, Computational aspects of singularity theory. Ph.D. thesis, Liverpool University, 1993.
  25. C. Klotz, O. Pop and J. H. Rieger, Real double-points of deformations of A-simple map-germs from R n to R 2n . Math. Proc. Camb. Phil. Soc., to appear.
  26. J. Little, On singularities of submanifolds of higher dimensional Euclidean space. Annali Mat. Pura et Appl., 83 (1969), 261-336.
  27. E. J. N. Looijenga, Structural stability of smooth families of C ∞ -functions. Doctoral Thesis, University of Amsterdam, 1974.
  28. D. K. H. Mochida, M. C. Romero Fuster and M. A. S. Ruas, The Geometry of surfaces in 4-Space from a contact viewpoint. Geom. Dedicata 54 (1995), 323-332.
  29. D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, Osculating hyperplanes and asymp- totic directions of codimension two submanifolds of Euclidean spaces. Geom. Dedicata 77 (1999), 305-315.
  30. D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, Singularities and duality in the flat geometry of submanifolds in Euclidean spaces. Beiträge Algebra Geom. 42 (2001), 137-148.
  31. D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, Inflection points and nonsingular embeddings of surfaces in R 5 . Rocky Mountain Journal of Maths 33 (2003), 995-1010.
  32. D. M. Q. Mond, On the classification of germs of maps from R 2 to R 3 . Proc. London Math. Soc. 50 (1985), 333-369.
  33. J. A. Montaldi, On generic composites of maps. Bull. London Math. Soc. 23 (1991), 81-85.
  34. S. M. Moraes and M.C. Romero-Fuster, Semiumbilics and 2-regular immersions of surfaces in Euclidean spaces. Rocky Mountain J. of Maths. 35 (2005), 1327-1345.
  35. J. J. Nuño-Ballesteros and M. C. Romero Fuster, Vanishing normal curvature submanifolds of codimension two in Euclidean space. Preprint, 2007.
  36. W. Pohl, Differential geometry of higher order. Topology 1 (1962), 169-211.
  37. J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds. Trans. Amer. Math. Soc. 236 (1978), 307-314.
  38. D. Ratcliffe, Stems and series in A-classification. Proc. London Math. Soc. 70 (1995), 183-213.
  39. J. H. Rieger, Families of maps from the plane to the plane. J. London Math. Soc. 36 (1987), 351-369.
  40. J. H. Rieger and M. A. S. Ruas, Classification of A-simple germs from k n to k 2 . Compositio Mathematica 79 (1991), 99-108.
  41. O. P. Shcherbak, Projectively dual space curves and Legendre singularities. Trudy Tbiliss. Univ. 232/233 (1982), 280-336.
  42. C. T. C. Wall, Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13 (1981), 481-539.
  43. E-mail: Carmen.Romero@uv.es ICMC-USP, Dept. de Matemática, Av. do Trabalhador São-Carlense, 400 Centro, Caixa Postal 668, CEP 13560-970, São Carlos (SP), Brazil.
  44. E-mail: maasruas@icmc.usp.br Department of Mathematical Sciences, University of Durham, Science Laboratories, South Rd, Durham DH1 3LE, United Kingdom E-mail: farid.tari@durham.ac.uk