Inflection points and topology of surfaces in 4-space (original) (raw)
We consider asymptotic line fields on generic surfaces in 4-space and show that they are globally defined on locally convex surfaces, and their singularities are the inflection points of the surface. As a consequence of the generalized Poincaré-Hopf formula, we obtain some relations between the number of inflection points in a generic surface and its Euler number. In particular, it follows that any 2-sphere, generically embedded as a locally convex surface in 4-space, has at least 4 inflection points.