Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine (original) (raw)
Abstract
Agmatine N-acetyltransferase (AgmNAT) catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine. Herein, we provide evidence that Drosophila melanogaster AgmNAT (CG15766) catalyzes the formation of N-acetylagmatine using an ordered sequential mechanism; acetyl-CoA binds prior to agmatine to generate an AgmNAT•acetyl-CoA•agmatine ternary complex prior to catalysis. Additionally, we solved a crystal structure for the apo form of AgmNAT with an atomic resolution of 2.3 Å, which points towards specific amino acids that may function in catalysis or active site formation. Using the crystal structure, primary sequence alignment, pH-activity profiles, and site-directed mutagenesis, we evaluated a series of active site amino acids in order to assign their functional roles in AgmNAT. More specifically, pH-activity profiles identified at least one catalytically important, ionizable group with an apparent pK a of ~7.5, which corresponds to the general base in catalysis, Glu-34. Moreover, these data led to a proposed chemical mechanism, which is consistent with the structure and our biochemical analysis of AgmNAT. The discovery and characterization of enzymes involved in fatty acid amide biosynthesis has been a longstanding focus of our research 1. One possible biosynthetic route for the fatty acid amides would be the reaction between an amine and a fatty acyl-CoA: R 1-NH 2 + R 2-COS -CoA → R 2-CO-NH-R 1 + CoA-SH. Enzymes of the GCN5-related N-acetyltransferase family (GNAT) catalyze a similar reaction using acetyl-CoA as a substrate to generate N-acetylamides 2. Acetyl-CoA-dependent N-acetylation by N-acetyltransferases is known for a diversity of amines 3-5 in a broad range of organisms 2,5-8. We have long suspected that enzymes identified as N-acetyltransferases might accept longer-chain fatty acyl-CoA thioesters as substrates or that novel N-acetyltransferase-like enzymes exist that utilize fatty acyl-CoA thioesters as substrates. Drosophila melanogaster is an excellent model organism to study fatty acid amide biosynthesis. These insects are known to produce fatty acid amides 9,10 , its genome has been sequenced 11 , these organisms can be manipulated genetically 12 , and are inexpensive to maintain. In addition, two N-acetyltransferases had been identified from D. melanogaster, arylalkylamine N-acetyltransferase variant A (AANATA, also called dopamine N-acetyltransferase) 13 and arylalkylamine N-acetyltransferase-like 2 (AANATL2) 14. Both enzymes catalyze the N-acetylation of arylalkylamines, but their respective substrate specificities, kinetic mechanisms, and chemical
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (83)
- Merkler, D. J., Merkler, K. A., Stern, W. & Fleming, F. F. Fatty acid amide biosynthesis: a possible new role for peptidylglycine α-amidating enzyme and acyl-CoA:glycine N-acyltransferase. Arch. Biochem. Biophys. 330, 430-434 (1995).
- Vetting, M. W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433, 212-226 (2005).
- Buda, M. & Klein, D. C. Structure and Function of Monoamine Enzymes in Modern Pharmacology-Toxicology, Vol. 10 (eds Usdin, E., Weiner, N. & Youdim, M.B.H.) 527-544 (Marcel Dekker, 1977).
- King, C. M. & Glowinski, I. B. Acetylation, deacetylkation and acyltransfer. Environ. Health Perspect. 49, 43-50 (1983).
- Sloley, B. D. & Juorio, A. V. Monoamine neurotransmitters in invertebrates and verterbrates: an examination of the diverse enzymatic pathways utilized to synthesize and inactivate biogenic amines. Int. Rev. Neurobiol. 38, 253-303 (1995).
- Hearse, D. J. & Weber, W. W. Multiple N-acetyltransferases and drug metabolism. Biochem. J. 132, 519-526.
- Sim, E., Payton, M., Noble, M. & Minchin, R. An update on genetic, structural and functional studies of arylamine N- acetyltransferases in eucaryotes and procaryotes. Hum. Mol. Genet. 9, 2435-2441 (2000).
- Glenn, A. E., Karagianni, E. P., Ulndreaj, A. & Boukouvala, S. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family. FEBS Lett. 584, 3158-3164 (2010).
- Tortoriello, G. et al. Targeted lipidomics in Drosophila melanogaster identifies novel 2-monoacylglycerolsa and N-acyl amides. PLoS One 8, e67865, https://doi.org/10.1371/journal.pone.0067865 (2013).
- Jeffries, K. A. et al. Drosophila melanogaster as a model system to study long-chain fatty acid amide metabolism. FEBS Lett. 588, 1596-1602 (2014).
- Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185-2195 (2000).
- Phelps, C. B. & Brand, A. H. Ectopic gene expression in Drosophila using GAL4 system. Methods 14, 367-379 (1998).
- Brodbeck, D. et al. Molecular and biochemical characterization of the aaNAT1 (Dat) Molecular and biochemical characterization of the aaNAT1 (Dat) locus in Drosophila melanogaster: differential expression of two gene products. DNA Cell. Biol. 17, 621-633 (1998).
- Amherd, R. et al. Purification, cloning, and characterization of a second arylalkylamine N-acetyltransferase from Drosophila melanogaster. DNA Cell Biol. 19, 697-705 (2000).
- Dempsey, D. R. et al. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry 53, 7777-7793 (2014).
- Jeffries, K. A. et al. Identification of an arylalkylamine N-acyltransferase from Drosophila melanogaster that catalyzes the formation of long-chain N-acylserotonins. FEBS Lett. 588, 594-599 (2014).
- Dempsey, D. R., Carpenter, A.-M., Rodriguez Ospina, S. & Merkler, D. J. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2. Insect Biochem. Mol. Biol. 66, 1-12 (2015).
- Chu, C. J. et al. N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633-13639 (2003).
- Verhoeckx, K. C. M. et al. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim. Biophys. Acta 1811, 578-586 (2011).
- Moreteau, B. & Chaminade, N. The effects of lindane poisoning on N-acetyldopamine and N-acetyl 5-hydroxytryptamine concentrations in the brain of Locusta migratoria L. Ecotoxicol. Environ. Saf. 20, 115-120 (1990).
- Han, Q., Robinson, H., Ding, H., Christensen, B. M. & Li, J. Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 29, 11669-11674 (2012).
- Tsugehara, T., Imai, T. & Takeda, M. Characterization of arylalkylamine N-acetyltransferase from silkmoth (Antheraea pernyi) and pesticidal drug edesign base on the baculovirus-expressed enzyme. Comp. Biochem.Physiol. C Toxicol. Pharmacol. 157, 93-102 (2013).
- Lourenço, B. L. A. et al. Virtual screening and molecular docking for arylalkylamine-N-acetyltransferase (aaNAT) inhibitors, a key enzyme of Aedes (Stegomyia) aegypti (L.) metabolism. Comput. Mol. Biosci. 5, 35-44 (2015).
- Zheng, W. & Cole, P. A. Serotonin N-acetyltransferase: mechanism and inhibition. Curr. Med. Chem. 9, 1187-1199 (2002).
- Kossel, A. Über das agmatin. Z. Physiol. Chem. 66, 257-261 (1910).
- Gale, E. F. Estimation of 1 (+)-arginine in protein hydrolysates by the use of 1 (+)-arginine decarboxylase. Nature 157, 265 (1946).
- Piletz, J. E. et al. Agmatine: clinical applications after 100 years in translation. Drug Discov. Today 18, 880-893 (2013).
- Li, G. et al. Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263, 966-969 (1994).
- Halaris, A. & Plietz, J. Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs 21, 885-900 (2007).
- Raasch, W., Regunathan, S., Li, G. & Reis, D. J. Agmatine is widely and unequally distributed in rat organs. Ann. N. Y. Acad. Sci. 763, 330-334 (1995).
- Molderings, G. J. et al. Gastrointestinal uptake of agmatine: distribution in tissues and organs and pathophysiologic relevance. Ann. N. Y. Acad. Sci. 1009, 44-51 (2003).
- Meeley, M. P., Hensley, M. L., Ernsberger, P., Felsen, D. & Reis, D. J. Evidence for a bioactive clonidine-displacing substance in peripheral tissues and serum. Biochem.Pharmacol. 44, 733-740 (1992).
- Otake, K. et al. Regional localization of agmatine in the rat brain: an immunocytochemical study. Brain Res. 787, 1-14 (1998).
- Reis, D. J., Yang, X. C. & Milner, T. A. Agmatine containing axon terminals in rat hippocampus form synapses on pyramidal cells. Neurosci. Lett. 250, 185-188 (1998).
- Salvi, M. et al. Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism. Biochem. J. 396, 337-345 (2006).
- Grillo, M. A. et al. Inhibition of agmatine transport in liver mitochondria by new charge-deficient agmatine analogouses. Biochem. Soc. Trans. 35, 401-404 (2007).
- Battaglia, V. et al. Agmatine transport in brain mitochondria: a different mechanism from that in liver mitochondria. Amino Acids 38, 423-430 (2010).
- Horyn, O. et al. Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15 N-labelled arginine. Biochem. J. 388, 419-425 (2005).
- Gorbatyuk, O. S., Milner, T. A., Wang, G., Regunathan, S. & Reis, D. J. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp. Neurol. 171, 235-245 (2001).
- Molderings, G. J. & Haenisch, B. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential. Pharmacol. Ther. 133, 351-365 (2012).
- Raasch, W., Schafer, U., Chun, J. & Dominiak, P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br. J. Pharmacol. 133, 755-780 (2001).
- Li, F. et al. Imidazoline receptor antisera-selected/Nischarin regulates the effect of agmatine on the development of morphine dependence. Addict. Biol. 17, 392-408 (2012).
- Pinthing, D. et al. Agmatine recognizes alpha 2-adrenoceptor binding sites but neither activates nor inhibits alpha 2-adrenoceptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 351, 10-16 (1995).
- Loring, R. H. Agmatine acts as an antagonist of neuronal nicotinic receptors. Br. J. Pharmacol. 99, 207-211 (1990).
- Yang, X. C. & Reis, D. J. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 288, 544-594 (1999).
- Taksande, B. G., Kotagale, N. R., Tripathi, S. J., Ugale, R. R. & Chopde, C. T. Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology 57, 415-424 (2009).
- Hamana, K., Suzuki, M., Wakabayashi, T. & Matsuzaki, S. Polyamine levels in the gonads, sperm and salivary gland of cricket, cockroach, fly and midge. Comp. Biochem. Physiol. B 92, 691-695 (1989).
- Hamana, K., Niitsu, M., Samejima, K. & Matsuzaki, S. Novel polyamines in insects and spiders. Comp. Biochem. Physiol. B 100, 399-402.
- Hamana, K., Uemiya, H. & Niitsu, M. Polyamines of primitive apterygotan insects: springtails, silverfish and a bristletail. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 137, 75-79 (2004).
- Shen, W. et al. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymoph metabolomics. Anal. Chim. Acta 942, 1-11 (2016).
- Jeong, S. E., Lee, Y., Hwang, J. H. & Knipple, D. C. Effects of the sap of the common oleander Nerium indicum (Apocyanaceae) on male fertility and spermatogenesis in the oriental tobacco budworm Helicoverpa assulta (Lepidoptera, Noctuidae). J. Exp. Biol. 204, 3935-3942 (2001).
- Morris, S. M. Jr. Recent advances in arginine metabolism. Curr. Opin. Clin. Nutr. Metab. Care 7, 45-51 (2004).
- Holt, A. & Baker, G. B. Metabolism of agmatine (clonidine-displacing substance) by diamine oxidase and the possible implications for studies of imidazoline receptors. Prog. Brain Res. 106, 187-197 (1995).
- Cabella, C. et al. Transport and metabolism of agmatine in rat hepatocyte cultures. Eur. J. Biochem. 268, 940-947 (2001).
- Satriano, J. et al. Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J. Cell. Physiol. 188, 313-320 (2001).
- Ohnuma, M. et al. N 1 -Aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus. J. Biol. Chem. 280, 30073-30082 (2005).
- Ikeguchi, Y., Bewley, M. C. & Pegg, A. E. Aminopropyltransferases: function, structure and genetics. J. Biochem. 139, 1-9 (2006).
- von Röpenack, E., Parr, A. & Schulze-Lefert, P. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J. Biol. Chem. 273, 9013-9022 (1998).
- Muroi, A. et al. Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta 230, 517-527 (2009).
- Cheng, K.-C., Liao, J.-N. & Lyu, P.-C. Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. Biochem. J. 446, 395-404 (2012).
- Dempsey, D. R. et al. Mechanistic and structural analysis of a Drosophila melanogaster enzyme, arylalkylamine N-acetyltransferase like 7, an enzyme that catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine. Biochemistry 54, 2644-2658 (2015).
- Dempsey, D. R. et al. Identification of an arylalkylamine N-acyltransferase from Drosophila melanogaster that catalyzes the formation of long-chain N-acylserotonins. FEBS Lett. 588, 594-599 (2014).
- Forouhar, F. et al. Structural and functional evidence for Bacillus subtilis PaiA as a novel N 1 -spermidine/spermine acetyltransferase. J. Biol. Chem. 280, 40328-40336 (2005).
- Wang, H., Li, J., Meng, G., Wei, K. & Ruan, J. Identification of agmatine and its acetylation metabolities in rat urine by stable isotope labeling coupled ion trap mass spectrometry. Yaowu Fenxi Zazhi 25, 131-136 (2005).
- Guillou, Y. & Robin, Y. Présence ď α-N-acétylagmatine chez des Cnidaires, Actinia equina et Actinia fragacea. C. R. Seances Soc. Biol Fil. 173, 576-579 (1979).
- Uzbay, T. I. The pharmacological importance of agmatine in the brain. Neurosci. Biobehav. Rev. 36, 502-519 (2012).
- Moncada, S. & Higgs, A. Mechanisms of disease -the L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002-2012 (1993).
- Moinard, C., Cynober, L. & de Bandt, J.-P. Polyamines: metabolism and implications in human diseases. Clin. Nutr. 24, 184-197 (2005).
- Matsui, I., Wiegand, L. & Pegg, A. E. Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachlorida and its role in the conversion of spermidine into putrescine. J. Biol. Chem. 256, 2454-2459 (1981).
- Hegde, S. S., Chandler, J., Vetting, M. W., Yu, M. & Blanchard, J. S. Mechanistic and structural analysis of human spermidine/ spermine N 1 -acetyltransferase. Biochemistry 46, 7187-7195 (2007).
- De Angelis, J., Gastel, J., Klein, D. C. & Cole, P. A. Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 273, 3045-3050 (1998).
- Tanner, K. G., Langer, M. R., Kim, Y. & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048-22055 (2000).
- Draker, K.-a, Northrup, D. B. & Wright, G. D. Kinetic mechanism of the GCN5-related chromosomal aminoglycoside acetyltransferase AAC(6')-Ii from Enterococcus faecium: evidence of dimer subunit cooperativity. Biochemistry 42, 6565-6574 (2003).
- Johnson, C. M., Huang, B., Roderick, S. L. & Cook, P. F. Kinetic mechanism of the serine acetyltransferase from Haemophilus influenzae. Arch. Biochem. Biophys. 429, 115-122 (2004).
- Favrot, L., Blanchard, J. S. & Vergnolle, O. Bacterial GCN5-related N-acetyltransferases: from resistance to regulation. Biochemistry 55, 989-1002 (2016).
- Scheibner, K. A., De Angelis, J., Burley, S. K. & Cole, P. A. Investigation of the roles of catalytic residues in serotonin N- acetyltransferase. J. Biol. Chem. 277, 18118-18126 (2002).
- Hickman, A. B., Namboodiri, M. A., Klein, D. C. & Dyda, F. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 Å resolution with a bisubstrate analog. Cell 97, 361-369 (1999).
- Berndsen, C. E. & Denu, J. M. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr. Opin. Struct. Biol. 18, 682-689 (2008).
- Pavlicek, J. et al. Evidence that proline focuses movement of the floppy loop of arylalkylamine N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 283, 14552-14558 (2008).
- Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 50, 760-763 (1994).
- Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385 (2003).
- Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 213-221 (2010).
- Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2126-2132 (2004).