Stability Indicating RP-HPLC Method for Estimation of Repaglinide in Rabbit Plasma (original) (raw)
Related papers
STABILITY INDICATING RP-HPLC METHOD FOR ESTIMATION OF REPAGLINIDE IN RABBIT PLASMA Original Article
International Journal of Applied Pharmaceutics, 2019
Objective: A simple, selective and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method to estimate repaglinide (REP) in rabbit plasma using rabeprazole (RAB) as an internal standard was developed and validated for various qualifications. Methods: The chromatographic separation was performed on C18 Results: The retention times of REP and RAB were found at ~4.3 and 5.1 min respectively, with adequate system suitability parameters (theoretical plates ≥3619, tailing factor ≤1.38, resolution factor 2.37). The method has linearity over a concentration range of 10 to 1000 ng/ml (r (2) analytical column (5 μ, 250×4.6 mm) using acetonitrile: 0.05% trifluoroacetic acid in water (55:45, v/v) as mobile phase at the flow rate of 1 ml/min. Validation of the analytical method was performed as per ICH guidelines. 2 Conclusion: The developed RP-HPLC method for estimation of REP in rabbit plasma was developed. The method was found to be rapid, costeffective and accurate to estimate the REP from the sample matrix. The method can be a most useful tool for in vivo study of REP in the rabbit. =0.9987). The results of accuracy (≥98.17%), intra-, inter-day precision (≤2.9%), recovery (101.21±2.09%) and process efficiency (99.77±3.74%) found satisfactory with no matrix effect. The analyte in samples were found stable up to 6 h, 3 freeze-thaw cycles and not more than 2 mo corresponding to bench-top, short and long term stability studies respectively.
Journal of Pharmaceutical and Biomedical Analysis, 2007
In this study, the development and validation of a high-performance liquid chromatography (HPLC) assay for determination ofrepaglinide concentration in human plasma for pharmacokinetic studies is described. Plasma samples containing repaglinide and an internal standard, indomethacin were extracted with ethylacetate at pH 7.4. The recovery of repaglinide was 92% ± 55.31. Chromatographic separations were performed on Purospher® STAR C-18 analytical column (4.8 mm x l50mm; 5~m particle size). The mobile phase composed of acetonitrile-ammonium formate (pH 2.7; 0.01 M) (60:40, v/v). The flow rate was 1ml/min. The retention time for repaglinide and indomethacin were approximately 6.2 and 5.3 min. respectively. Calibration curves of repaglinide were linear in the concentration range of 20-200 ng/ml in plasma. The limits of detection and quantification were 10 ng/ml and 20 ng/ml, respectively. The inter-day precision was from 5.21 to 11.84% and the intra-day precision ranged from 3.90 to 6.67%. The inter-day accuracy ranged 89.95 to 105.75% and intra-day accuracy ranged from 92.37 to 104.66%. This method was applied to determine repaglinide concentration in human plasma samples for a pharmacokinetic study.
Bio-Analytical Method Development of Repaglinide Drug Delivery Systems
Journal of Drug Delivery and Therapeutics, 2019
A sensitive, specific and rapid high-performance liquid chromatography-ultraviolet spectroscopy method was developed and successfully validated to estimate the repaglinide in rabbit plasma. The solvent extraction method was used for repaglinide from serum by using ethyl acetate and 0.1N HCl. The mobile phase consists of acetonitrile: phosphate buffer pH 4.0 at 60:40 %v/v with 1% triethylamine at flow rate of 0.8ml/min and at fixed wavelength of 254nm. On ten minutes of run time, repaglinide was retention at 7.4min. The extraction efficiency 95% for repaglinide. The intra-day and inter-day precision was in the terms of %RSD less than 1.76%. The developed method was validated and proposed method is useful for pharmacokinetics studies. Keywords: Anti-diabetics, HPLC,Methanol,Phosphate buffer, Repaglinide
Pharmaceutical Methods, 2012
Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets Background: Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. Objective: UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. Materials and Methods: The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. Results: The developed methods illustrated excellent linearity (r 2 > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. Conclusion: The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations.
Journal of AOAC International
A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 1-35 microg/mL and precision (relative standard deviation < 1.5%). The LOD and LOQ were 0.23 and 0.72 microg/mL, respectively, and good recoveries were achieved (98-101.8%). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC met...
Journal of Pharmacy and Bioallied Sciences, 2013
R epaglinide (RPG), chemically, (S)-2-ethoxy-4-[2-[[3-methyl-1-[2-(1-piperidinyl) phenyl] butyl] amino]-2-oxoethyl] benzoic acid [Figure 1], is a new nonsulphonyl urea oral hypoglycemic drug. [1] It is used in the treatment of Type-2 diabetes mellitus. [2] It is official in the United State Pharmacopoeia (USP) which describes liquid chromatographic method for its quantification. [3] Literature survey reveals that one HPLC method has been developed for determination of repaglinide in human plasma, [4]. Two HPLC methods, [5,6] one rapid performance thin layer chromatography (RPTLC) [7] and one spectrophotometric method [8] in pharmaceutical dosage forms are also reported. To our knowledge, no article related to the stability-indicating HPTLC determination of repaglinide in pharmaceutical dosage forms has been reported in the literature. An ideal stability-indicating method is one that quantifies the standard drug alone and also resolves its degradation products. Ferenczi-Fodor and colleagues [9,10] explained basic acceptance criteria for evaluation of validation experiments based on practical experience for planar chromatographical procedures, which may be used at different levels either in qualitative identity testing, assays, semi-quantitative limit tests or quantitative determination of impurities. The parameters for robustness testing of the given procedures and quality assurance of quantitative planar chromatographical
This study was conducted to evaluate the effect of sex differences on the pharmacokinetics of repaglinide in healthy subjects. One hundred twenty one healthy volunteers (61 male and 60 female; aged 18 -50 years) were included in the study. Subjects were administered a single 4-mg repaglinide oral dose. Blood samples were taken at 0, 30, 60, 120, 180 and 240 min. Serum repaglinide levels were determined by a high-performance liquid chromatography (HPLC) method. Subjects were also genotyped by polymerase chain reactions-restriction fragment length polymorphisms (PCR-RFLP) for CYP3A4*4, *5 and *18 alleles and by an allele-specific multiplex PCR for CYP2C8*2, *3, *4 and *5 alleles. The pharmacokinetics of repaglinide were comparable between male and female subjects. The mean clearance (CL) of repaglinide was 16.0% lower (p = 0.03), the mean area under the serum concentration-time curve (AUC) was 12.8% higher (p = 0.04) and the peak serum concentration (C max ) was 13.2% higher (p = 0.03) in females compared to male subjects. The mean rate of elimination (kel) and mean CL of repaglinide were 47.67% (p = 0.03) higher and 29.25% (p = 0.03) higher, respectively, in male subjects having CYP2C8*5 allele compared to female subjects. We also found that the mean half-life (t 1/2 ) of repaglinide was 42.43% higher (p = 0.03), and the mean AUC was 35.83% higher (p = 0.03) in female subjects when compared to the male subjects having CYP2C8*5 allele. Sex differences significantly influence the pharmacokinetics of repaglinide.
Acta Chromatographica
A simple, rapid, precise, and accurate, stability-indicating reversed phase high performance liquid chromatographic method was developed and validated for simultaneous determination of metformin HCl and repaglinide. The chromatographic separation was achieved on YMC Pack AM ODS (5 μm, 250 mm length × 4.6 mm i.d.) column at a detector wavelength of 210 nm, using an isocratic mobile phase consisting of methanol and 10 mM potassium dihydrogen phosphate buffer (pH 2.5) in a ratio of 70:30 v/v at a flow rate of 1 mL min −1 . The retention times for metformin and repaglinide were found to be 2.6 and 11.3 min, respectively. The drugs were exposed to thermal, photolytic, hydrolytic, and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. Validation of the method was carried out as per International Conference on Harmonization (ICH) guidelines. Linearity was established for metformin and repaglinide in the range of 5-200 μg mL −1 and 1-200 μg mL −1 , respectively. The limits of detection were 0.3 μg mL −1 and 0.13 μg mL −1 for metformin and repaglinide, respectively. The method was found to be specific and stability-indicating as no interfering peaks of degradants and excipients were observed. The proposed method is hence suitable for application in quality-control laboratories for quantitative analysis of both the drugs individually and in combination, since it is simple and rapid with good accuracy and precision.
Bioscience trends
This study is an extension of the previous enhancement of dissolution properties of repaglinide using liquisolid compacts. The development and validation of a highperformance liquid chromatography (HPLC) assay for the determination of repaglinide concentration in rabbit plasma for pharmacokinetic studies is described. Repaglinide optimizing formula was orally administered to rabbits and blood samples were used to determine the pharmacokinetic parameters of repaglinide, which were compared to pharmacokinetic parameters of marketed tablets (Novonorm 2 mg). Also, to investigate the biological activity of this new formula, in comparison with the commercial product, oral glucose tolerance tests (OGTT), area under the curve and insulin levels were studied. Moreover, we studied the efficacy and safety of this new formula in several potencies (0.5, 1, and 2 mg) and blood glucose, insulin, kidney and liver functions. The relative bioavailability of repaglinide from its liquisolid compact for...