Option pricing and hedging under a stochastic volatility Lévy process model (original) (raw)

Abstract

In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. Bates, D. S. (1996). Jumps and stochastic volatility: The exchange rate processes implicit in deutschemark options. Review of Financial Studies, 9(1), 69-107.
  2. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
  3. Boyarchenko, S. I., & Levendorski ȋ, S. Z. (2002). Non-Gaussian Merton-Black-Scholes theory. New Jersey: World Scientific.
  4. Buffington, J., & Elliott, R. J. (2002). American options with regime switching. International Journal of Theoretical and Applied Finance, 5(5), 497-514.
  5. Carr, P., Geman, H., Madan, D., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 3, 345-382.
  6. Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2(4), 61-73.
  7. Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman & Hall/CRC.
  8. Duan, J.-C. (1995). The GARCH option pricing model. Mathematical Finance, 5(1), 13-32.
  9. Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1(4), 423-432.
  10. Elliott, R. J., & Kopp, P. E. (2010). Mathematics of financial markets. (2nd ed). New York: Springer.
  11. Föllmer, H., & Schweizer, M. (1991). Hedging of contingent claims under incomplete informa- tion. In M.H.A Davis & R.J. Elliott (Eds.), Applied stochastic analysis (Vol. 5) (pp. 389-414). New York: Gordon and Breach.
  12. Föllmer, H., & Sondermann, D. (1986). Hedging of non-redundant contingent claims. In W. Hildenbrand & A. Mas-Colell (Eds.), Contributions to Mathematical Economics (pp. 205-223). Amsterdam: North-Holland Press.
  13. Fujiwara, T., & Miyahara, Y. (2003). The minimal entropy martingale measures for geometric Lévy processes. Finance & Stochastics, 7, 509-531.
  14. Gerber, H., & Shiu, E. (1994). Option pricing by Esscher transforms. Transactions of the Society of Actuaries, XLVI, 99-140.
  15. Heston, S. L. (1993). A closed form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6, 327-343.
  16. Jackson, K. R., Jaimungal, V., & Surkov, S. (2007). Option pricing with regime switching Lévy processes using fourier space time stepping. Journal of Computational Finance, 12(2), 1-29.
  17. Kim, Y., & Lee, J. H. (2007). The relative entropy in CGMY processes and its applications to finance. Mathematical Methods of Operations Research, 66(2), 327-338.
  18. Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010). Tempered stable and tempered infinitely divisible GARCH models. Journal of Banking & Finance, 34, 2096-2109.
  19. Kim, Y. S., Rachev, S. T., Chung, D. M., & Bianchi, M. L. (2009). The modified tempered stable distribu- tion, GARCH-models and option pricing. Probability and Mathematical Statistics, 29(1), 91-117.
  20. Lewis, A. L. (2001). A simple option formula for general jump-diffusion and other exponential Lévy processes. Available from http://www.optioncity.net.
  21. Liu, R. H., Zhang, Q., & Yin, G. (2006). Option pricing in a regime switching model using the fast Fourier transform. Journal of Applied Mathematics and Stochastic Analysis 1-22. Article ID: 18109, doi:10.1155/JAMSA/2006/18109.
  22. Menn, C., & Rachev, S. T. (2009). Smoothly truncated stable distributions, GARCH-models, and option pricing. Mathematical Methods in Operation Research, 69(3), 411-438.
  23. Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. New Jersey: Wiley.
  24. Rachev, S. T., & Mittnik, S. (2000). Stable paretian models in finance. New York: Wiley.
  25. Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press.