Option pricing and hedging under a stochastic volatility Lévy process model (original) (raw)
Abstract
In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- Bates, D. S. (1996). Jumps and stochastic volatility: The exchange rate processes implicit in deutschemark options. Review of Financial Studies, 9(1), 69-107.
- Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
- Boyarchenko, S. I., & Levendorski ȋ, S. Z. (2002). Non-Gaussian Merton-Black-Scholes theory. New Jersey: World Scientific.
- Buffington, J., & Elliott, R. J. (2002). American options with regime switching. International Journal of Theoretical and Applied Finance, 5(5), 497-514.
- Carr, P., Geman, H., Madan, D., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 3, 345-382.
- Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2(4), 61-73.
- Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman & Hall/CRC.
- Duan, J.-C. (1995). The GARCH option pricing model. Mathematical Finance, 5(1), 13-32.
- Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1(4), 423-432.
- Elliott, R. J., & Kopp, P. E. (2010). Mathematics of financial markets. (2nd ed). New York: Springer.
- Föllmer, H., & Schweizer, M. (1991). Hedging of contingent claims under incomplete informa- tion. In M.H.A Davis & R.J. Elliott (Eds.), Applied stochastic analysis (Vol. 5) (pp. 389-414). New York: Gordon and Breach.
- Föllmer, H., & Sondermann, D. (1986). Hedging of non-redundant contingent claims. In W. Hildenbrand & A. Mas-Colell (Eds.), Contributions to Mathematical Economics (pp. 205-223). Amsterdam: North-Holland Press.
- Fujiwara, T., & Miyahara, Y. (2003). The minimal entropy martingale measures for geometric Lévy processes. Finance & Stochastics, 7, 509-531.
- Gerber, H., & Shiu, E. (1994). Option pricing by Esscher transforms. Transactions of the Society of Actuaries, XLVI, 99-140.
- Heston, S. L. (1993). A closed form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6, 327-343.
- Jackson, K. R., Jaimungal, V., & Surkov, S. (2007). Option pricing with regime switching Lévy processes using fourier space time stepping. Journal of Computational Finance, 12(2), 1-29.
- Kim, Y., & Lee, J. H. (2007). The relative entropy in CGMY processes and its applications to finance. Mathematical Methods of Operations Research, 66(2), 327-338.
- Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010). Tempered stable and tempered infinitely divisible GARCH models. Journal of Banking & Finance, 34, 2096-2109.
- Kim, Y. S., Rachev, S. T., Chung, D. M., & Bianchi, M. L. (2009). The modified tempered stable distribu- tion, GARCH-models and option pricing. Probability and Mathematical Statistics, 29(1), 91-117.
- Lewis, A. L. (2001). A simple option formula for general jump-diffusion and other exponential Lévy processes. Available from http://www.optioncity.net.
- Liu, R. H., Zhang, Q., & Yin, G. (2006). Option pricing in a regime switching model using the fast Fourier transform. Journal of Applied Mathematics and Stochastic Analysis 1-22. Article ID: 18109, doi:10.1155/JAMSA/2006/18109.
- Menn, C., & Rachev, S. T. (2009). Smoothly truncated stable distributions, GARCH-models, and option pricing. Mathematical Methods in Operation Research, 69(3), 411-438.
- Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. New Jersey: Wiley.
- Rachev, S. T., & Mittnik, S. (2000). Stable paretian models in finance. New York: Wiley.
- Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press.