Lee DH, Jacobs Jr DR, Gross M, Kiefe CI, Roseman J, Lewis CE et al.. -Glutamyltransferse is a predictor of incident diabetes and Hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin Chem 49, 1358-1366 (original) (raw)

Abstract

Background: ␥-Glutamyltransferase (GGT), which maintains cellular concentrations of glutathione, may be a marker of oxidative stress, and GGT itself may produce oxidative stress. We performed a prospective study to examine whether serum GGT predicts diabetes and hypertension. Methods: Study participants were 4844 black and white men and women 18-30 years of age in 1985-1986; they were reexamined 2, 5, 7, 10, and 15 years later. Year 0 GGT cutpoints were 12, 17, 25, and 36 U/L (overall 25th, 50th, 75th, and 90th percentiles; the laboratory cutpoints for abnormal are 40 U/L in women and 50 U/L in men). We deleted 32 participants with prevalent diabetes and 140 participants with prevalent hypertension from the respective incidence analyses. Results: After adjustment for study center, race, sex, and age in proportional hazards regression, the hazard ratios across year 0 GGT categories were 1.0, 1.6, 1.7, 4.0 (95% confidence interval, 2.0-8.1), and 5.5 (2.7-11.1) for 15year incident diabetes and 1.0, 1.2, 1.7 (1.2-2.2), 2.3 (1.7-3.2), and 2.3 (1.7-3.2) for hypertension. Additional adjustment for year 0 alcohol consumption, body mass index, cigarette smoking, and physical activity attenuated this relationship, but GGT remained a significant predictor. Conclusions: Serum GGT within a range regarded as physiologically normal is associated with incident diabetes and hypertension. Considering known functionality of GGT, these associations are consistent with a role for oxidative stress in risk for diabetes and hypertension.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (32)

  1. Nystrom E, Bengtsson C, Lindstedt G, Lapidus L, Lindquist O, Waldenstrom J. Serum ␥-glutamyltransferase in a Swedish female population. Age-related reference intervals; morbidity and in cases with raised catalytic concentration. Acta Med Scand 1988;224: 79 -84.
  2. Nilssen O, Forde OH, Brenn T. The Tromso Study. Distribution and population determinants of ␥-glutamyltransferase. Am J Epidemiol 1990;132:318 -26.
  3. Nilssen O, Forde OH. Seven-year longitudinal population study of change in ␥-glutamyltransferase: the Tromso Study. Am J Epide- miol 1994;139:787-92.
  4. Wannamethee G, Ebrahim S, Shaper AG. ␥-Glutamyltransferase: determinants and association with mortality from ischemic heart disease and all causes. Am J Epidemiol 1995;142:699 -708.
  5. Brenner H, Rothenbacher D, Arndt V, Schuberth S, Fraisse E, Fliedner TM. Distribution, determinants, and prognostic value of ␥-glutamyltransferase for all-cause mortality in a cohort of con- struction workers from southern Germany. Prev Med 1997;26: 305-10.
  6. Perry IJ, Wannamethee SG, Shaper AG. Prospective study of serum ␥-glutamyltransferase and risk of NIDDM. Diabetes Care 1998;21:732-7.
  7. Miura K, Nakagawa H, Nakamura H, Tabata M, Nagase H, Yoshida M, et al. Serum ␥-glutamyl transferase level in predicting hyper- tension among male drinkers. J Hum Hypertens 1994;8:445-9.
  8. Jousilahti P, Rastenyte D, Tuomilehto J. Serum ␥-glutamyl trans- ferase, self-reported alcohol drinking, and the risk of stroke. Stroke 2000;31:1851-5.
  9. Lee DH, Ha MH, Kim JR, Gross M, Jacobs DR. ␥-Glutamyltrans- ferase, alcohol, and blood pressure: a four year follow-up study. Ann Epidemiol 2002;12:90 -6.
  10. Lee DH, Ha MH, Kim JH, Christiani DC, Gross MD, Steffes M, et al. ␥-Glutamyltransferase and diabetes-a 4 year follow-up study. Diabetologia 2003;46:359 -64.
  11. Teschke R, Brand A, Strohmeyer G. Induction of hepatic microso- mal ␥-glutamyltransferase activity following chronic alcohol con- sumption. Biochem Biophys Res Commun 1977;75:718 -24.
  12. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr, et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 1988; 41:1105-16.
  13. Jacobs DR Jr, Hahn LP, Haskell WL, Pirie P, Sidney S. Validity and reliability of a short physical activity history: CARDIA and the Minnesota Heart Health Program. J Cardiopulmonary Rehabil 1989;9:448 -59.
  14. Morrow JD, Roberts LJ. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 1999;300:3-12.
  15. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 2001;50:1844 -50.
  16. Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, et al. NASH and insulin resistance: insulin hyperse- cretion and specific association with the insulin resistance syn- drome. Hepatology 2002;35:373-9.
  17. Kugelman A, Choy HA, Liu R, Shi MM, Gozal E, Forman HJ. ␥-Glutamyl transpeptidase is increased by oxidative in rat alveolar L2 epithelial cells. Am J Respir Cell Mol Biol 1994;11: -92.
  18. Takahashi Y, Oakes SM, Williams MC, Takahashi S, Miura T, Joyce-Brady M. Nitrogen dioxide exposure activates ␥-glutamyl transferase gene expression in rat lung. Toxicol Appl Pharmacol 1997;143:388 -96.
  19. Karp DR, Shimooku K, Lipsky PE. Expression of ␥-glutamyl transpeptidase protects ramos B cells from oxidation-induced cell death. J Biol Chem 2001;276:3798 -804.
  20. Stark AA. Oxidative metabolism of glutathione by ␥-glutamyl transpeptidase and peroxisome proliferation: the relevance to hepatocarcinogenesis. A hypothesis. Mutagenesis 1991;6:241-5.
  21. Stark AA, Russell JJ, Langenbach R, Pagano DA, Zeiger E, Huberman E. Localization of oxidative damage by a glutathione-␥- glutamyl transpeptidase system in preneoplastic lesions in sec- tions of livers from carcinogen-treated rats. Carcinogenesis 1994; 15:343-8.
  22. Paolicchi A, Tongiani R, Tonarelli P, Comporti M, Pompella A. ␥-Glutamyl transpeptidase-dependent lipid peroxidation in iso- lated hepatocytes and HepG2 hepatoma cells. Free Radic Biol Med 1997;22:853-60.
  23. Drozdz R, Parmentier C, Hachad H, Leroy P, Siest G, Wellman M. ␥-Glutamyltransferase dependent generation of reactive oxygen species from a glutathione/transferrin system. Free Radic Biol Med 1998;25:786 -92.
  24. Brown KE, Kinter MT, Oberley TD, Freeman ML, Frierson HF, Ridnour LA, et al. Enhanced ␥-glutamyl transpeptidase expression and selective loss of CuZn superoxide dismutase in hepatic iron overload. Free Radic Biol Med 1998;24:545-55.
  25. Lakka TA, Nyyssonen K, Salonen JT. Higher levels of conditioning leisure time physical activity are associated with reduced levels of stored iron in Finnish men. Am J Epidemiol 1994;140:148 -60.
  26. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk be- tween iron metabolism and diabetes. Diabetes 2002;51:2348 - 54.
  27. Haffner SM. Epidemiology of hypertension and insulin resistance syndrome. J Hypertension 1997;15:S25-30.
  28. Orie NN, Zidek W, Tepel M. Reactive oxygen species in essential hypertension and non-insulin-dependent diabetes mellitus. Am J Hypertens 1999;12:1169 -74.
  29. Cleland SJ, Petrie JR, Small M, Elliott HL, Connell JM. Insulin action is associated with endothelial function in hypertension and type 2 diabetes. Hypertension 2000;35:507-11.
  30. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lack- ing endothelial nitric oxide synthase. Circulation 2001;104: 342-5.
  31. Zacharski LR, Ornstein DL, Woloshin S, Schwartz LM. Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. Am Heart J 2000;140:98 -104.
  32. Gillum RF. Association of serum ferritin and indices of body fat distribution and obesity in Mexican American men-the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord 2001;25:639 -45.