Reproductive solution for grade-two fluid model in two dimensions (original) (raw)

Global existence of solutions for the second grade fluid equations in a thin three-dimensional domain

Asymptotic Analysis, 2016

We consider the second grade fluid equations on a thin three-dimensional domain with periodic boundary conditions. We prove global existence and uniqueness of the solution for large initial data. We use an appropriate decomposition of solution u into a v part, which is solution of a 2D second grade fluid equations and the remaining w part which has an initial data converging to 0 as the thickness of the thin domain goes to 0.

Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model

Nonlinear Analysis-real World Applications, 2009

We consider a non-linear viscous bi-layer shallow water model with capillarity effects and extra friction terms in a two-dimensional space. This system is issued from a derivation of a three-dimensional Navier-Stokes equations with water-depth depending on friction coefficients. We prove an existence result for global weak solution in a periodic domain Ω = T 2 .

Existence of global weak solutions for a viscous 2D bilayer Shallow Water model

Comptes Rendus Mathematique, 2011

We consider a system composed by two immiscible fluids in two-dimensional space that can be modelized by a bilayer Shallow Water equations with extra friction terms and capillary effects. We give an existence theorem of global weak solutions in a periodic domain. Résumé Nous considérons un système composé par deux fluides immiscibles dans un domaine bi-dimensionnel pouvantêtre représenté par un modèle bicouche visqueux de Saint-Venant avec des termes de friction additionnels et des effets de capillarité. Nous donnons un théorème d'existence de solutions faibles globales dans un domaine périodique. Version française abrégée Dans cette note, nous nous intéressonsà l'étude de l'existence de solutions faibles globales en temps d'un modèle bicouche visqueux de Saint-Venant dérivé dans [6]. Notons que dans le cas d'une couche, dans [1] et [4] les auteurs ont obtenu l'existence de solutions faibles grâceà une nouvelle entropie (BD) introduite premièrement par Bresch et Desjardins dans [1]. On peut trouver d'autres résultats sur l'existence de solutions pour des modèles bicouche de Saint-Venant dans [3] et [5]. Dans ces modèles, les termes couplant les deux fluides compliquent le passageà la limite. Dans [7] uneétude du modèle bicouche mais où les termes de friction ontété simplifiés aété faite. Les termes de friction couplant les deux couches dans le

On periodic solutions for one-phase and two-phase problems of the Navier–Stokes equations

2019

This paper is devoted to proving the existence of time-periodic solutions of one-phase or two-phase problems for the Navier-Stokes equations with small periodic external forces when the reference domain is close to a ball. Since our problems are formulated in time-dependent unknown domains, the problems are reduced to quasiliner systems of parabolic equations with non-homogeneous boundary conditions or transmission conditions in fixed domains by using the so-called Hanzawa transform. We separate solutions into the stationary part and the oscillatory part. The linearized equations for the stationary part have eigen-value 000, which is avoided by changing the equations with the help of the necessary conditions for the existence of solutions to the original problems. To treat the oscillatory part, we establish the maximal LpL_pLp-$L_q$ regularity theorem of the periodic solutions for the system of parabolic equations with non-homogeneous boundary conditions or transmission conditions, wh...

Strong solutions for a 1D viscous bilayer shallow water model

Nonlinear Analysis: Real World Applications, 2013

In this paper, we consider a viscous bilayer shallow water model in one space dimension that represents two superposed immiscible fluids. For this model, we prove the existence of strong solutions in a periodic domain. The initial heights are required to be bounded above and below away from zero and we get the same bounds for every time. Our analysis is based on the construction of approximate systems which satisfy the BD entropy and on the method developed by A. Mellet and A. Vasseur to obtain the existence of global strong solutions for the one dimensional Navier-Stokes equations.

Uniqueness of strong solution for a 1D viscous bi-layer Shallow Water model

Annals of the University of Craiova - Mathematics and Computer Science Series, 2012

The aim of this paper is to prove the uniqueness of strong solutionof a one dimensional viscous bilayer shallow water model. Our analy-sis is based on some new useful estimate namely BD entropy and on amethod developed by Mellet and Vasseur in [14] to prove the existenceand uniqueness on some compressible one dimensional Navier-Stokessystem. Under suitable assumptions on the solutions and using Gron-wall Lemma, we obtain the uniqueness of strong solution. We performour analysis in periodic domain with periodic boundaries conditions.

Global Weak Solutions to a Generic Two-Fluid Model

Archive for Rational Mechanics and Analysis, 2010

This paper deals with mathematical properties of a generic two-fluid flow model commonly used in industrial applications. More precisely, we address the question of whether available mathematical results in the case of a single-fluid governed by the compressible barotropic Navier–Stokes equations may be extended to such a two-phase model. We focus on existence of global weak solutions, linear theory and