Spinal circuitry and respiratory recovery following spinal cord injury (original) (raw)

Long-term reorganization of respiratory pathways after partial cervical spinal cord injury

European Journal of Neuroscience, 2008

High cervical spinal cord injury (SCI) interrupts bulbospinal respiratory pathways innervating phrenic motoneurons, and induces an inactivation of phrenic nerves (PN) and diaphragm. We have previously shown that the ipsilateral (ipsi) PN was inactivated following a lateral C2 SCI, but was spontaneously partially reactivated 7 days post-SCI. This phrenic reactivation depended on contralateral (contra) descending pathways, located laterally, that cross the spinal midline. We analysed here whether long-term post-lesional changes may occur in the respiratory network. We showed that ipsi PN reactivation was greater at 3 months compared with 7 days post-SCI, and that it was enhanced after acute contra phrenicotomy (Phx), which also induced a substantial reactivation of the ipsi diaphragm (not detected at 7 days post-SCI). At 3 months post-SCI (compared with 7 days post-SCI), ipsi PN activity was only moderately affected by ipsi Phx or by gallamine treatment, a nicotinic neuromuscular blocking agent, indicating that it was less dependent on ipsi sensory phrenic afferents. After an additional acute contra SCI (C1) performed laterally, ipsi PN activity was abolished in rats 7 days post-SCI, but persisted in rats 3 months post-SCI. This activity thus depended on new functional descending pathways located medially rather than laterally. These may not involve newly recruited neurons as retrograde labelling showed that ipsi phrenic motoneurons were innervated by a similar number of medullary respiratory neurons after a short and long post-lesional time. These results show that after a long post-lesional time, phrenic reactivation is reinforced by an anatomo-functional reorganization of spinal respiratory pathways.

Extensive respiratory plasticity after cervical spinal cord injury in rats: Axonal sprouting and rerouting of ventrolateral bulbospinal pathways

Experimental Neurology, 2012

Spinal cord injury (SCI) causes an interruption of descending motor and autonomic nervous tracts. However, a partial injury, and particularly a unilateral section, is generally followed by spontaneous locomotor and respiratory recovery. Although locomotor functional recovery has been correlated to spontaneous anatomical plasticity of the corticospinal tract, the remodeling of the bulbospinal tract that sustains respiratory improvement is unknown and has therefore been investigated here after chronic lateral cervical injury in rats (90 days post-lesion by comparison to 7 days post-lesion). We show that chronic lateral C2 SCI leads both to a decreased thickness of the ipsilateral ventrolateral funiculus at sus and sub-lesional levels and to an opposite effect on the contralateral side. At C1 level, the number of ventrolateral bulbospinal fibers, stained with anterograde tracer was reduced within the ipsilateral ventrolateral funiculi while collateral arborization toward the gray matter and growth associated protein-43 levels was increased. At C2 lesional level, fibers rerouting toward the gray matter were also identified for 5% of the axotomized axon terminals. Despite these chronic sprouting processes respiratory bulbospinal projections to ipsilateral phrenic nucleus remained poor (less than 10% compared to non-injured conditions). Retrograde labeling of projections onto the phrenic nucleus revealed, after chronic injury, an increased recruitment of C1 propriospinal interneurons which moreover received more contacts from bulbospinal collaterals. This chronic remodeling was correlated with chronic diaphragm recovery under conditions of respiratory stress. Thus, despite extensive axonal loss and absence of direct phrenic reinnervation by bulbospinal respiratory neurons, sprouting processes toward cervical propriospinal neurons may contribute to the observed partial respiratory recovery.

Neuroprotective and Neurorestorative Processes after Spinal Cord Injury: The Case of the Bulbospinal Respiratory Neurons

Neural Plasticity, 2016

High cervical spinal cord injuries interrupt the bulbospinal respiratory pathways projecting to the cervical phrenic motoneurons resulting in important respiratory defects. In the case of a lateralized injury that maintains the respiratory drive on the opposite side, a partial recovery of the ipsilateral respiratory function occurs spontaneously over time, as observed in animal models. The rodent respiratory system is therefore a relevant model to investigate the neuroplastic and neuroprotective mechanisms that will trigger such phrenic motoneurons reactivation by supraspinal pathways. Since part of this recovery is dependent on the damaged side of the spinal cord, the present review highlights our current understanding of the anatomical neuroplasticity processes that are developed by the surviving damaged bulbospinal neurons, notably axonal sprouting and rerouting. Such anatomical neuroplasticity relies also on coordinated molecular mechanisms at the level of the axotomized bulbosp...

Respiratory motor recovery after unilateral spinal cord injury: eliminating crossed phrenic activity decreases tidal volume and increases contralateral respiratory motor output

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003

By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was measured in anesthetized C2 hemisected rats at 2 months after injury with an intact ipsilateral phrenic nerve, or with ipsilateral phrenicotomy performed at the time of the SCI (i.e., crossed phrenic pathways rendered ineffective) (dual injury). Ipsilateral phrenicotomy did not alter the rapid shallow eupneic breathing pattern in C2 injured rats. However, the ability to generate large inspiratory volumes after either vagotomy or during augmented breaths was impaired if crossed phrenic activity was abolished. We also investigated whether compensatory plasticity in contralateral motoneurons would ...

Respiratory neuroplasticity and cervical spinal cord injury: translational perspectives

Trends in Neurosciences, 2008

Paralysis of the diaphragm is a severe consequence of cervical spinal cord injury. This condition can be experimentally modeled by lateralized, high cervical lesions that interrupt descending inspiratory drive to the corresponding phrenic nucleus. Although partial recovery of ipsilateral diaphragm function occurs over time, recent findings show persisting chronic deficits in ventilation and phrenic motoneuron activity. Some evidence suggests, however, that spontaneous recovery can be enhanced by modulating neural pathways to phrenic motoneurons via synaptic circuitries which appear more complex than previously envisioned. The present review highlights these and other recent experimental multidisciplinary findings pertaining to respiratory neuroplasticity in the rat. Translational considerations are also emphasized, with specific attention directed at the clinical and interpretational strengths of different lesion models and outcome measures.

Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

Experimental neurology, 2016

Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research.

Functional regeneration of respiratory pathways after spinal cord injury

Nature, 2011

Spinal cord injuries (SCI) often occur at the cervical level above the phrenic motor pools, which innervate the diaphragm. Unfortunately, the untoward effects of impaired breathing are a leading cause of SCI-related death, underscoring the importance of developing strategies to restore respiratory activity. Here we show that after cervical SCI, there is upregulation of the perineuronal net (PNN) associated chondroitin sulfate proteoglycans (CSPGs) around phrenic motor neurons. Digestion of these potently inhibitory extracellular matrix molecules with Chondroitinase ABC (ChABC) can, by itself, promote plasticity of spared tracts and restore limited activity to the paralyzed diaphragm. However, when combined with application of a peripheral nerve autograft, ChABC treatment results in lengthy regeneration of serotonergic axons and other bulbospinal fibers with remarkable recovery of diaphragm function. Following recovery and initial transection of the bridge, there occurs an unusual, overall increased tonic diaphragmatic EMG activity, suggesting considerable remodeling of spinal cord circuitry after regeneration. This is followed by complete elimination of the restored activity proving that regeneration is critical for the return of function. Overall, these experiments present a way to profoundly restore function of a single muscle following debilitating CNS trauma, through both plasticity of spared tracts and regeneration of essential pathways. Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Rapid and robust restoration of breathing long after spinal cord injury

Nature Communications, 2018

There exists an abundance of barriers that hinder functional recovery following spinal cord injury, especially at chronic stages. Here, we examine the rescue of breathing up to 1.5 years following cervical hemisection in the rat. In spite of complete hemidiaphragm paralysis, a single injection of chondroitinase ABC in the phrenic motor pool restored robust and persistent diaphragm function while improving neuromuscular junction anatomy. This treatment strategy was more effective when applied chronically than when assessed acutely after injury. The addition of intermittent hypoxia conditioning further strengthened the ventilatory response. However, in a sub-population of animals, this combination treatment caused excess serotonergic (5HT) axon sprouting leading to aberrant tonic activity in the diaphragm that could be mitigated via 5HT2 receptor blockade. Through unmasking of the continuing neuroplasticity that develops after injury, our treatment strategy ensured rapid and robust pa...

Early Phrenic Motor Neuron Loss and Transient Respiratory Abnormalities after Unilateral Cervical Spinal Cord Contusion

Journal of Neurotrauma, 2013

Contusion-type cervical spinal cord injury (SCI) is one of the most common forms of SCI observed in patients. In particular, injuries targeting the C3-C5 region affect the pool of phrenic motor neurons (PhMNs) that innervates the diaphragm, resulting in significant and often chronic respiratory dysfunction. Using a previously described rat model of unilateral midcervical C4 contusion with the Infinite Horizon Impactor, we have characterized the early time course of PhMN degeneration and consequent respiratory deficits following injury, as this knowledge is important for designing relevant treatment strategies targeting protection and plasticity of PhMN circuitry. PhMN loss (48% of the ipsilateral pool) occurred almost entirely during the first 24 h post-injury, resulting in persistent phrenic nerve axonal degeneration and denervation at the diaphragm neuromuscular junction (NMJ). Reduced diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation were observed as early as the first day post-injury (30% of pre-injury maximum amplitude), with slow functional improvement over time that was associated with partial reinnervation at the diaphragm NMJ. Consistent with ipsilateral diaphragmatic compromise, the injury resulted in rapid, yet only transient, changes in overall ventilatory parameters measured via whole-body plethysmography, including increased respiratory rate, decreased tidal volume, and decreased peak inspiratory flow. Despite significant ipsilateral PhMN loss, the respiratory system has the capacity to quickly compensate for partially impaired hemidiaphragm function, suggesting that C4 hemicontusion in rats is a model of SCI that manifests subacute respiratory abnormalities. Collectively, these findings demonstrate significant and persistent diaphragm compromise in a clinically relevant model of midcervical contusion SCI; however, the therapeutic window for PhMN protection is restricted to early time points post-injury. On the contrary, preventing loss of innervation by PhMNs and/or inducing plasticity in spared PhMN axons at the diaphragm NMJ are relevant long-term targets.

Cervical spinal cord injury alters the pattern of breathing in anesthetized rats

Journal of applied physiology (Bethesda, Md. : 1985), 2001

The mechanisms by which chronic cervical spinal cord injury alters respiratory function and plasticity are not well understood. We speculated that spinal hemisection at C(2) would alter the respiratory pattern controlled by vagal mechanisms. Expired volume (V(E)) and respiratory rate (RR) were measured in anesthetized control and C(2)-hemisected rats at 1 and 2 mo postinjury. C(2) hemisection altered the pattern of breathing at both postinjury time intervals. Injured rats utilized a higher RR and lower V(E) to maintain the same minute ventilation as control rats. After bilateral vagotomy, the pattern of breathing in injured rats was not different from controls. The frequency of augmented breaths was higher in injured rats at 2 mo postinjury before vagotomy; however, the V(E) of augmented breaths was not different between groups. In conclusion, C(2) hemisection alters the pattern of breathing at 1 and 2 mo postinjury via vagal mechanisms.