Functional lipid pairs as building blocks of phase-separated membranes (original) (raw)
Proceedings of the National Academy of Sciences
Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1,2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-glycero-3-phosphochol...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.