Human Insulin-Like Growth Factor (IGF) Binding Protein-1 Inhibits IGF-I-Stimulated Body Growth but Stimulates Growth of the Kidney in Snell Dwarf Mice (original) (raw)
Related papers
The role of the IGF axis in IGFBP-1 and IGF-I induced renal enlargement in Snell dwarf mice
Journal of Endocrinology, 2001
Insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) is generally believed to inhibit IGF action in the circulation. In contrast, IGFBP-1 has been reported to interact with cell surfaces and enhance IGF-I action locally in some tissues. Renal IGFBP-1 levels are found elevated in various conditions characterized by renal growth (e.g. diabetes mellitus, hypokalemia). To test whether IGFBP-1 is a renotropic factor, IGFBP-1 was administered alone or in combination with IGF-I to Snell dwarf mice, an in vivo model without compensatory feedback effects on growth hormone (GH) secretion. In three control groups of Snell dwarf mice, placebo, GH or IGF-I was administered. Compared with placebo, kidney weight increased in all treated groups, however, with different effects on kidney morphology. Administration of IGF-I, alone or in combination with IGFBP-1, tended to increase glomerular volume, while no changes were seen in the other groups. Administration of IGFBP-1 or IGFBP-1+IGF-I bot...
Pediatric Nephrology, 2000
Growth hormone (GH) and insulin-like growth factors (IGFs) are essential for normal growth and development during embryonic stages as well as postnatally. While GH has little effect on these processes prenatally, the IGFs are important during these stages. On the other hand the GH-IGF-I axis is important for pubertal growth. To determine whether postnatal growth and development are dependent on circulating or locally produced IGF-I, we deleted the IGF-I gene in the liver using the cre/LoxP system used for tissue-specific gene deletion. These animals demonstrated approximately 75%-80% reduction in circulating IGF-I and an approximate fourfold increase in circulating GH. Despite the marked reductions in circulating IGF-I, growth and development was apparently normal. Thus the original somatomedin hypothesis needs to be re-evaluated in the light of these new findings.
Endocrinology, 1999
Organ weight was compared in adult mice with deletion of one (IRS-1 Ϫ/ϩ) or both (IRS-1 Ϫ/Ϫ) copies of the insulin receptor substrate-1 (IRS-1) gene and IRS-1 ϩ/ϩ littermates. IRS-1 Ϫ/ϩ mice showed modest reductions in weight of most organs in proportion to a decrease in body weight. IRS-1 Ϫ/Ϫ mice showed major reductions in weight of heart, liver, and spleen that were directly proportional to a decrease in body weight. In IRS-1 Ϫ/Ϫ mice, kidney and particularly small intestine and brain exhibited proportionately smaller weight reductions, and gastrocnemius muscle showed a proportionately greater weight reduction than the decrease in body weight. Growth deficits in IRS-1 Ϫ/Ϫ mice could reflect impaired actions of multiple hormones or cytokines that activate IRS-1. To assess the requirement for IRS-1 in insulinlike growth factor I (IGF-I)-dependent postnatal growth, IRS-1 Ϫ/ϩ mice were cross-bred with mice that widely overexpress a human IGF-I transgene (IGFϩ) to generate IGFϩ and wild-type mice on an IRS-1 ϩ/ϩ , IRS-1 Ϫ/ϩ , and IRS-1 Ϫ/Ϫ background. IGF-I overexpression increased body weight and weight of brain, small intestine, kidney, spleen, heart, and gastrocnemius muscle in IRS-1 ϩ/ϩ mice. IGF-I overexpression could not completely reverse the body growth retardation in IRS-1 Ϫ/Ϫ mice. Absolute or partial IRS-1 deficiency impaired IGF-I-induced body overgrowth more in females than in males. In males and females, IGF-I stimulated similar overgrowth of brain regardless of IRS-1 status, and intestine and spleen showed dose dependence on IRS-1 for IGF-I-induced growth. IGF-I-induced growth of gastrocnemius muscle had an absolute requirement for IRS-1. IGF-I-induced growth of kidney and heart was impaired by IRS-1 deficiency only in females. In vivo, therefore, most organs do not require IRS-1 for IGF-I-induced growth and can use alternate signaling molecules to mediate IGF-I action. Other organs, such as gastrocnemius muscle, require IRS-1 for IGF-I-induced growth in vivo.
European Journal of Endocrinology, 1997
To study interactions between insulin-like growth factor-II (IGF-II) and growth hormone (GH) in vivo, we crossed hemizygous transgenic mice carrying phosphoenolpyruvate carboxykinase (PEPCK)-IGF-II fusion genes with hemizygous PEPCK-bovine GH (bGH) transgenic mice. Offspring harbouring both transgenes (IB), the IGF-II transgene (I) or the bGH transgene (B), and non-transgenic littermates (C) were obtained. Blood samples were taken before (end of week 12) and after (end of week 14) the mice had received a diet high in protein and low in carbohydrates to stimulate PEPCK promoter-controlled transgene expression. Mean serum GH concentrations of both B and IB mice corresponded to 900 ng/ml and increased more than twofold (P < 0.001) after 1 week of the high-protein diet. GH concentrations in controls and I mice were less than 20 ng/ml. Serum IGF-II concentrations in I and IB mice were three-to fourfold higher than those in C and B mice. Whereas IGF-II concentrations were not changed by the high-protein diet in the last two groups, serum IGF-II increased significantly in I (P < 0.001) and IB mice (P < 0.05). This increase was significantly (P < 0.05) less pronounced in IB than in I mice. Circulating IGF-I concentrations were about twofold (P < 0.001) higher in B and IB than in C and I mice, and showed a tendency to be lower in I than in C and in IB than in B mice when animals were maintained on the standard diet. The high-protein diet did not change circulating IGF-I concentrations in controls and B mice, but resulted in a significant reduction of serum IGF-I concentrations in I (P < 0.05) and IB mice (P < 0.001). Consequently, after PEPCK-IGF-II transgene expression was stimulated, serum IGF-I concentrations were significantly (P < 0.05) lower in I than in C and in IB than in B mice. Serum IGF-binding protein (IGFBP)-2 concentrations were significantly (P < 0:05) higher in I mice than in all other groups when mice were maintained on the standard diet, with a tendency to reduced IGFBP-2 concentrations in B mice. After the high-protein diet, serum IGFBP-2 concentrations did not change in C and I mice, but increased by two-to threefold in B and IB mice (P < 0:001). Serum IGFBP-3 concentrations tended to be greater in B and IB than in C and I mice, but these differences were mostly not significant. IGFBP-4 concentrations were significantly (P < 0:001) increased by GH overproduction in B and IB mice. Our data suggest that the reduction in circulating IGF-I concentrations by increased IGF-II is most probably due to the limited serum IGF binding capacity and the short half-life of free IGFs, rather than to a reduction in GH-dependent IGF-I production. Effects of GH overproduction on serum IGFBP-2 concentrations depend on dietary factors and may be both inhibitory and stimulatory.
An experimental model of partial Insulin-like Growth Factor-I deficiency in mice
Insulin-like growth factor-1 (IGF-1) is responsible for many systemic growth hormone (GH) functions although it has an extensive number of inherent activities (anabolic, cytoprotective, and anti-inflammatory). The potential options for IGF-1 therapy arise as a promising strategy in a wide list of human diseases. However, deeper studies are needed from a suitable animal model. All human conditions of IGF-1 deficiency consist in partially decreased IGF-1 levels since total absence of this hormone is hardly compatible with life. The aim of this work was to confirm that heterozygous Igf-1 +/− mice (Hz) may be considered as an appropriate animal model to study conditions of IGF-1 deficiency, focusing on early ages. Heterozygous Igf-1 +/− mice were compared to homozygous Igf-1 +/+ by assessing gene expression by quantitative PCR, serum circulating levels by ELISA, and tissue staining. Compared to controls, Hz mice (25 days old) showed a partial but significant reduction of IGF-1 circulating levels, correlating with a reduced body weight and diminished serum IGFBP-3 levels. Hz mice presented a significant decrease of IGF-1 gene expression in related organs (liver, bone, testicles, and brain) while IGF-1 receptor showed a normal expression.
Proceedings of The National Academy of Sciences, 1999
The body growth of animals is regulated by growth hormone and IGF-I. The classical theory of this regulation is that most IGF-I in the blood originates in the liver and that body growth is controlled by the concentration of IGF-I in the blood. We have abolished IGF-I production in the livers of mice by using the Cre͞loxP recombination system. These mice demonstrated complete inactivation of the IGF-I gene in the hepatocytes. Although the liver accounts for less than 5% of body mass, the concentration of IGF-I in the serum was reduced by 75%. This finding confirms that the liver is the principal source of IGF-I in the blood. However, the reduction in serum IGF-I concentration had no discernible effect on postnatal body growth. We conclude that postnatal body growth is preserved despite complete absence of IGF-I production by the hepatocytes.