Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture (original) (raw)
Abstract
Carbon dioxide (CO2), a major greenhouse gas, capture has recently become a crucial technological solution to reduce atmospheric emissions from fossil fuel burning. Thereafter, many efforts have been put forwarded to reduce the burden on climate change by capturing and separating CO2, especially from larger power plants and from the air through the utilization of different technologies (e.g., membrane, absorption, microbial, cryogenic, chemical looping, and so on). Those technologies have often suffered from high operating costs and huge energy consumption. On the right side, physical process, such as adsorption, is a cost-effective process, which has been widely used to adsorb different contaminants, including CO2. Henceforth, this review covered the overall efficacies of CO2 adsorption from air at 196 K to 343 K and different pressures by the carbon-based materials (CBMs). Subsequently, we also addressed the associated challenges and future opportunities for CBMs. According to thi...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (116)
- Siriwardane, R.V.; Shen, M.; Fisher, E.P.; Poston, J.A. Adsorption of CO 2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279-284. [CrossRef]
- Lopes, F.V.S.; Grande, C.A.; Ribeiro, A.M.; Loureiro, J.M.; Evaggelos, O.; Nikolakis, V.; Rodrigues, A.E. Adsorption of H 2 , CO 2 , CH 4 , CO, N 2 and H 2 O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 2009, 44, 1045-1073. [CrossRef]
- Haque, E.; Islam, M.M.; Pourazadi, E.; Sarkar, S.; Harris, A.T.; Minett, A.I.; Yanmaz, E.; Alshehri, S.M.; Ide, Y.; Wu, K.C.W. Boron-functionalized graphene oxide-organic frameworks for highly efficient CO 2 capture. Chem. Asian. J. 2017, 12, 283-288. [CrossRef] [PubMed]
- Creamer, A.E.; Gao, B. Carbon-based adsorbents for postcombustion CO 2 capture: A critical review. Environ. Sci. Technol. 2016, 50, 7276-7289. [CrossRef]
- Alam, M.M.; Hossain, M.A.; Hossain, M.D.; Johir, M.; Hossen, J.; Rahman, M.S.; Zhou, J.L.; Hasan, A.; Karmakar, A.K.; Ahmed, M.B. The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes 2020, 8, 203. [CrossRef]
- Rubin, E.; De Coninck, H. IPCC special report on carbon dioxide capture and storage. In TNO (2004): Cost Curves for CO2 Storage, Part 2; Cambridge University Press: Cambridge, UK, 2005; Volume 2, p. 14.
- Li, J.R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.K.; Balbuena, P.B.; Zhou, H.C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791-1823. [CrossRef]
- D'Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058-6082. [CrossRef]
- Shi, X.; Xiao, H.; Lackner, K.S.; Chen, X. Capture CO 2 from ambient air using nanoconfined ion hydration. Angew. Chem. 2016, 128, 4094-4097. [CrossRef]
- Shi, X.; Xiao, H.; Azarabadi, H.; Song, J.; Wu, X.; Chen, X.; Lackner, K.S. Sorbents for direct capture of CO 2 from ambient air. Angew. Chem. Int. Ed. 2020, 99, 6984-7006. [CrossRef]
- Ren, X.; Li, H.; Chen, J.; Wei, L.; Modak, A.; Yang, H.; Yang, Q. N-doped porous carbons with exceptionally high CO 2 selectivity for CO 2 capture. Carbon 2017, 114, 473-481. [CrossRef]
- Hao, G.P.; Jin, Z.Y.; Sun, Q.; Zhang, X.Q.; Zhang, J.T.; Lu, A.H. Porous carbon nanosheets with precisely tunable thickness and selective CO 2 adsorption properties. Energy Environ. Sci. 2013, 6, 3740-3747. [CrossRef]
- Zhang, L.H.; Li, W.C.; Tang, L.; Wang, Q.G.; Hu, Q.T.; Zhang, Y.; Lu, A.H. Primary amine modulated synthesis of two-dimensional porous nanocarbons with tunable ultramicropores. J. Mater. Chem. A 2018, 6, 24285-24290. [CrossRef]
- Qian, D.; Lei, C.; Wang, E.M.; Li, W.C.; Lu, A.H. A method for creating microporous carbon materials with excellent CO 2 -adsorption capacity and selectivity. ChemSusChem 2014, 7, 291-298. [CrossRef] [PubMed]
- Drage, T.C.; Kozynchenko, O.; Pevida, C.; Plaza, M.G.; Rubiera, F.; Pis, J.; Snape, C.E.; Tennison, S. Developing activated carbon adsorbents for pre-combustion CO 2 capture. Energy Proced. 2009, 1, 599-605. [CrossRef]
- Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J.F. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 2008, 22, 3050-3056. [CrossRef]
- Yu, C.H.; Huang, C.H.; Tan, C.S. A review of CO 2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745-769. [CrossRef]
- Kim, I.; Svendsen, H.F. Heat of absorption of carbon dioxide (CO 2 ) in monoethanolamine (MEA) and 2-(aminoethyl) ethanolamine (AEEA) solutions. Ind. Eng. Chem. 2007, 46, 5803-5809. [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem: Chem. Sust. Energy Mater. 2009, 2, 796-854. [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sust. Energy Rev. 2015, 42, 1055-1064. [CrossRef]
- Tan, X.F.; Liu, S.B.; Liu, Y.G.; Gu, Y.L.; Zeng, G.M.; Hu, X.J.; Wang, X.; Liu, S.H.; Jiang, L.H. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359-372. [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenerg. 2016, 84, 76-86. [CrossRef]
- Lee, J.; Kim, K.H.; Kwon, E.E. Biochar as a catalyst. Renew. Sustain. Energy Rev. 2017, 77, 70-79. [CrossRef]
- You, S.; Ok, Y.S.; Chen, S.S.; Tsang, D.C.; Kwon, E.E.; Lee, J.; Wang, C.H. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresour. Technol. 2017, 246, 242-253. [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems-a review. Mitig. Adapt. Strat. Glob. Change 2006, 11, 403-427. [CrossRef]
- Balahmar, N.; Mitchell, A.C.; Mokaya, R. Generalized Mechanochemical Synthesis of Biomass-derived sustainable carbons for high performance CO 2 storage. Adv. Energy Mater. 2015, 5. [CrossRef]
- Sevilla, M.; Fuertes, A.B. Sustainable porous carbons with a superior performance for CO 2 capture. Energy Environ. Sci. 2011, 4, 1765-1771. [CrossRef]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valori. 2016, 7, 201-235.
- Guizani, C.; Haddad, K.; Jeguirim, M.; Colin, B.; Limousy, L. Combustion characteristics and kinetics of torrefied olive pomace. Energy 2016, 107, 453-463. [CrossRef]
- Rousset, P.; Macedo, L.; Commandre, J.M.; Moreira, A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrol. 2012, 96, 86-91.
- Ullah, H.; Liu, G.J.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Zhou, C.C. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal. Bioresour. Technol. 2017, 245, 73-80. [CrossRef] [PubMed]
- Liu, W.J.; Jiang, H.; Yu, H.Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251-12285. [CrossRef] [PubMed]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247-1253. [CrossRef] [PubMed]
- Mohd, A.; Ghani, W.A.W.A.; Resitanim, N.Z.; Sanyang, L. A Review: Carbon dioxide capture: Biomass-derived-biochar and its applications. J. Disper. Sci. Technol. 2013, 34, 974-984. [CrossRef]
- Manyà, J.J.; González, B.; Azuara, M.; Arner, G. Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO 2 uptake and CO 2 /N 2 selectivity. Chem. Eng. 2018, 345, 631-639.
- Ello, A.S.; de Souza, L.K.; Trokourey, A.; Jaroniec, M. Development of microporous carbons for CO 2 capture by KOH activation of African palm shells. J. CO2 Util. 2013, 2, 35-38. [CrossRef]
- Li, D.W.; Ma, T.F.; Zhang, R.L.; Tian, Y.Y.; Qiao, Y.Y. Preparation of porous carbons with high low-pressure CO 2 uptake by KOH activation of rice husk char. Fuel 2015, 139, 68-70. [CrossRef]
- Deng, S.B.; Wei, H.R.; Chen, T.; Wang, B.; Huang, J.; Yu, G. Superior CO 2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. 2014, 253, 46-54.
- Hong, S.M.; Jang, E.; Dysart, A.D.; Pol, V.G.; Lee, K.B. CO 2 capture in the sustainable wheat-derived activated microporous carbon compartments. Sci. Rep. 2016, 6. [CrossRef]
- Coromina, H.M.; Walsh, D.A.; Mokaya, R. Biomass-derived activated carbon with simultaneously enhanced CO 2 uptake for both pre and post combustion capture applications. J. Mater. Chem. A 2016, 4, 280-289.
- Serafin, J.; Narkiewicz, U.; Morawski, A.W.; Wrobel, R.J.; Michalkiewicz, B. Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. J. CO2 Util. 2017, 18, 73-79. [CrossRef]
- Zhang, C.M.; Song, W.; Ma, Q.L.; Xie, L.J.; Zhang, X.C.; Guo, H. Enhancement of CO 2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy Fuels 2016, 30, 4181-4190.
- Rouzitalab, Z.; Maklavany, D.M.; Rashidi, A.; Jafarinejad, S. Synthesis of N-doped nanoporous carbon from walnut shell for enhancing CO 2 adsorption capacity and separation. J. Environ. Chem. Eng. 2018, 6, 6653-6663. [CrossRef]
- Zhu, B.J.; Shang, C.X.; Guo, Z.X. Naturally nitrogen and calcium-doped nanoporous carbon from pine cone with superior CO 2 capture capacities. ACS Sustain. Chem. Eng. 2016, 4, 1050-1057. [CrossRef]
- Bamdad, H.; Hawboldt, K.; MacQuarrie, S. Nitrogen functionalized biochar as a renewable adsorbent for efficient CO 2 removal. Energy Fuels 2018, 32, 11742-11748. [CrossRef]
- Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Metal incorporated biochar as a potential adsorbent for high capacity CO 2 capture at ambient condition. J. CO2 Util. 2018, 26, 281-293. [CrossRef]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.H.; Tsang, D.C.W.; et al. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109582. [CrossRef]
- Chowdhury, S.; Balasubramanian, R. Three-dimensional graphene-based porous adsorbents for postcombustion CO 2 capture. Ind. Eng. Chem. 2016, 55, 7906-7916. [CrossRef]
- Nasrollahzadeh, M.; Atarod, M.; Jaleh, B.; Gandomirouzbahani, M. In situ green synthesis of Ag nanoparticles on graphene oxide/TiO 2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 2016, 42, 8587-8596. [CrossRef]
- Liu, Y.; Xiang, M.; Hong, L. Three-dimensional nitrogen and boron codoped graphene for carbon dioxide and oils adsorption. RSC Adv. 2017, 7, 6467-6473. [CrossRef]
- Bhanja, P.; Das, S.K.; Patra, A.K.; Bhaumik, A. Functionalized graphene oxide as an efficient adsorbent for CO 2 capture and support for heterogeneous catalysis. RSC Adv. 2016, 6, 72055-72068. [CrossRef]
- Politakos, N.; Barbarin, I.; Cantador, L.S.; Cecilia, J.A.; Mehravar, E.; Tomovska, R. Graphene-based Monolithic Nanostructures for CO 2 Capture. Ind. Eng. Chem. Res. 2020, 59, 8612-8621. [CrossRef]
- Huang, A.; Feng, B. Facile synthesis of PEI-GO@ ZIF-8 hybrid material for CO 2 capture. Int. J. Hydrog. Energy 2018, 43, 2224-2231. [CrossRef]
- Rahimi, M.; Babu, D.J.; Singh, J.K.; Yang, Y.B.; Schneider, J.J.; Müller-Plathe, F. Double-walled carbon nanotube array for CO 2 and SO 2 adsorption. J. Chem. Phys. 2015, 143, 124701. [CrossRef] [PubMed]
- Zhao, W.; Bai, J.; Francisco, J.S.; Zeng, X.C. Formation of CO 2 hydrates within single-walled carbon nanotubes at ambient pressure: CO 2 capture and selective separation of a CO 2 /H 2 mixture in water. J. Phys. Chem. 2018, 122, 7951-7958. [CrossRef]
- Cortés-Súarez, J.; Celis-Arias, V.; Beltrán, H.I.; Tejeda-Cruz, A.; Ibarra, I.A.; Romero-Ibarra, J.E.; Sánchez-González, E.; Loera-Serna, S. Synthesis and characterization of an SWCNT@ HKUST-1 composite: Enhancing the CO 2 adsorption properties of HKUST-1. ACS Omega 2019, 4, 5275-5282. [CrossRef]
- Kemp, K.C.; Chandra, V.; Saleh, M.; Kim, K.S. Reversible CO 2 adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology 2013, 24, 235703. [CrossRef]
- Shin, G.J.; Rhee, K.; Park, S.J. Improvement of CO 2 capture by graphite oxide in presence of polyethylenimine. Int. J. Hydrog. Energy 2016, 41, 14351-14359. [CrossRef]
- Deng, M.; Park, H.G. Spacer-assisted amine-coiled carbon nanotubes for CO 2 capture. Langmuir 2019, 35, 4453-4459. [CrossRef]
- Gromov, A.; Kulur, A.; Gibson, J.; Mangano, E.; Brandani, S.; Campbell, E. Carbon nanotube/PVA aerogels impregnated with PEI: Solid adsorbents for CO 2 capture. Sustain. Energy Fuels 2018, 2, 1630-1640. [CrossRef]
- Alhwaige, A.A.; Agag, T.; Ishida, H.; Qutubuddin, S. Biobased chitosan hybrid aerogels with superior adsorption: Role of graphene oxide in CO 2 capture. RSC Adv. 2013, 3, 16011-16020. [CrossRef]
- Alhwaige, A.A.; Ishida, H.; Qutubuddin, S. Carbon aerogels with excellent CO 2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites. ACS Sustain. Chem. Eng. 2016, 4, 1286-1295. [CrossRef]
- Sircar, S.; Golden, T.C.; Rao, M.B. Activated carbon for gas separation and storage. Carbon 1996, 3, 1-12.
- Hayashi, J.; Kazehaya, A.; Muroyama, K.; Watkinson, A.P. Preparation of activated carbon from lignin by chemical activation. Carbon 2000, 38, 1873-1878. [CrossRef]
- Ge, C.; Lian, D.; Cui, S.; Gao, J.; Lu, J. Highly selective CO 2 capture on waste polyurethane foam-based activated carbon. Processes 2019, 7, 592. [CrossRef]
- Borhan, A.; Yusup, S.; Lim, J.W.; Show, P.L. Characterization and modelling studies of activated carbon produced from rubber-seed shell using KOH for CO 2 adsorption. Processes 2019, 7, 855. [CrossRef]
- Basheer, O.A.; Hanafiah, M.M.; Abdulhakim Alsaadi, M.; Al-Douri, Y.; Malek, M.A.; Mohammed Aljumaily, M.; Saadi Fiyadh, S. Synthesis and characterization of natural extracted precursor date palm fibre-based activated carbon for aluminum removal by RSM optimization. Processes 2019, 7, 249. [CrossRef]
- Shao, X.; Feng, Z.; Xue, R.; Ma, C.; Wang, W.; Peng, X.; Cao, D. Adsorption of CO 2 , CH 4 , CO 2 /N 2 and CO 2 /CH 4 in novel activated carbon beads: Preparation, measurements and simulation. AIChE J. 2011, 57, 3042-3051. [CrossRef]
- Chen, J.; Yang, J.; Hu, G.; Hu, X.; Li, Z.; Shen, S.; Radosz, M.; Fan, M. Enhanced CO 2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain. Chem. Eng. 2016, 4, 1439-1445. [CrossRef]
- Li, Y.; Li, D.; Rao, Y.; Zhao, X.; Wu, M. Superior CO 2 , CH 4 , and H 2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO 2 activation. Carbon 2016, 105, 454-462.
- Chiang, Y.C.; Yeh, C.Y.; Weng, C.H. Carbon Dioxide Adsorption on Porous and Functionalized Activated Carbon Fibers. Appl. Sci. 2019, 9, 1977. [CrossRef]
- Shi, W.; Wang, R.; Liu, H.; Chang, B.; Yang, B.; Zhang, Z. Biowaste-derived 3D honeycomb-like N and S dual-doped hierarchically porous carbons for high-efficient CO 2 capture. RSC Adv. 2019, 9, 23241-23253.
- Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. 2012, 4, 5800-5806. [CrossRef] [PubMed]
- Wei, H.; Chen, H.; Fu, N.; Chen, J.; Lan, G.; Qian, W.; Liu, Y.; Lin, H.; Han, S. Excellent electrochemical properties and large CO 2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim. Acta 2017, 231, 403-411. [CrossRef]
- Ahmed, M.B.; Johir, M.A.H.; Zhou, J.L.; Ngo, H.H.; Nghiem, L.D.; Richardson, C.; Moni, M.A.; Bryant, M.R. Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. J. Clean. Prod. 2019, 225, 405-413. [CrossRef]
- Ello, A.S.; de Souza, L.K.; Trokourey, A.; Jaroniec, M. Coconut shell-based microporous carbons for CO 2 capture. Microporous Mesoporous Mater. 2013, 180, 280-283. [CrossRef]
- Parshetti, G.K.; Chowdhury, S.; Balasubramanian, R. Biomass derived low-cost microporous adsorbents for efficient CO 2 capture. Fuel 2015, 148, 246-254. [CrossRef]
- Demir, M.; Tessema, T.D.; Farghaly, A.A.; Nyankson, E.; Saraswat, S.K.; Aksoy, B.; Islamoglu, T.; Collinson, M.M.; El-Kaderi, H.M.; Gupta, R.B. Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO 2 capture applications. Int. J. Energy Res. 2018, 42, 2686-2700. [CrossRef]
- Yu, D.; Hu, J.; Zhou, L.; Li, J.; Tang, J.; Peng, C.; Liu, H. Nitrogen-doped coal tar pitch based microporous carbons with superior CO 2 capture performance. Energy Fuels 2018, 32, 3726-3732. [CrossRef]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Shamiri, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 2010, 89, 143-151. [CrossRef]
- Petrova, B.; Budinova, T.; Petrov, N.; Yardim, M.; Ekinci, E.; Razvigorova, M. Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch. Carbon 2005, 43, 261-267.
- Zhang, X.Q.; Li, W.C.; Lu, A.H. Designed porous carbon materials for efficient CO 2 adsorption and separation. New Carbon Mater. 2015, 30, 481-501. [CrossRef]
- Long, L.; Jiang, X.; Liu, J.; Han, D.; Xiao, M.; Wang, S.; Meng, Y. In situ template synthesis of hierarchical porous carbon used for high performance lithium-sulfur batteries. RSC Adv. 2018, 8, 4503-4513. [CrossRef]
- Cox, M.; Mokaya, R. Ultra-high surface area mesoporous carbons for colossal pre combustion CO 2 capture and storage as materials for hydrogen purification. Sustain. Energy Fuels 2017, 1, 1414-1424. [CrossRef]
- Huang, K.; Chai, S.H.; Mayes, R.T.; Tan, S.; Jones, C.W.; Dai, S. Significantly increasing porosity of mesoporous carbon by NaNH 2 activation for enhanced CO 2 adsorption. Microporous Mesoporous Mater. 2016, 230, 100-108.
- Lu, J.; Jiao, C.; Majeed, Z.; Jiang, H. Magnesium and Nitrogen Co-Doped Mesoporous Carbon with Enhanced Microporosity for CO 2 Adsorption. Nanomaterials 2018, 8, 275. [CrossRef]
- Yaumi, A.; Bakar, M.A.; Hameed, B. Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed. Energy 2017, 138, 776-784. [CrossRef]
- Park, D.H.; Lakhi, K.S.; Ramadass, K.; Kim, M.K.; Talapaneni, S.N.; Joseph, S.; Ravon, U.; Al-Bahily, K.; Vinu, A. Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO 2 capture capacity. Chem. Eur. J. 2017, 23, 10753-10757. [CrossRef]
- Pei, Y.R.; Choi, G.; Asahina, S.; Yang, J.H.; Vinu, A.; Choy, J.H. A novel geopolymer route to porous carbon: High CO 2 adsorption capacity. Chem. Comm. 2019, 55, 3266-3269. [CrossRef]
- Srinivas, G.; Krungleviciute, V.; Guo, Z.X.; Yildirim, T. Exceptional CO 2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335-342.
- Lu, A.H.; Hao, G.P.; Zhang, X.Q. Porous carbons for carbon dioxide capture. In Porous Materials for Carbon Dioxide Capture; Springer: Berlin, Germany, 2014; pp. 15-77.
- Yuan, B.; Wu, X.; Chen, Y.; Huang, J.; Luo, H.; Deng, S. Adsorption of CO 2 , CH 4 , and N 2 on ordered mesoporous carbon: Approach for greenhouse gases capture and biogas upgrading. Environ. Sci. Technol. 2013, 47, 5474-5480. [CrossRef]
- Zhang, Z.; Luo, D.; Lui, G.; Li, G.; Jiang, G.; Cano, Z.P.; Deng, Y.P.; Du, X.; Yin, S.; Chen, Y. In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO 2 capture. Carbon 2019, 143, 531-541.
- Liu, L.; Zhang, H.; Wang, G.; Du, J.; Zhang, Y.; Fu, X.; Chen, A. Synthesis of mesoporous carbon nanospheres via "pyrolysis-deposition" strategy for CO 2 capture. J. Mater. Sci. 2017, 52, 9640-9647. [CrossRef]
- Zhou, J.; Li, Z.; Xing, W.; Zhu, T.; Shen, H.; Zhuo, S. N-doped microporous carbons derived from direct carbonization of K + exchanged meta-aminophenol-formaldehyde resin for superior CO 2 sorption. Chem. Comm. 2015, 51, 4591-4594. [CrossRef]
- Liu, Z.; Zhang, Z.; Jia, Z.; Zhao, L.; Zhang, T.; Xing, W.; Komarneni, S.; Subhan, F.; Yan, Z. New strategy to prepare ultramicroporous carbon by ionic activation for superior CO 2 capture. Chem. Eng. J. 2018, 337, 290-299. [CrossRef]
- Robertson, C.; Mokaya, R. Microporous activated carbon aerogels via a simple subcritical drying route for CO 2 capture and hydrogen storage. Microporous Mesoporous Mater. 2013, 179, 151-156. [CrossRef]
- Xing, W.; Liu, C.; Zhou, Z.; Zhang, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Gao, H.; Wang, G.; Qiao, S.Z. Superior CO 2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 2012, 5, 7323-7327. [CrossRef]
- Chang, B.; Sun, L.; Shi, W.; Zhang, S.; Yang, B. Cost-Efficient Strategy for Sustainable Cross-Linked Microporous Carbon Bead with Satisfactory CO 2 Capture Capacity. ACS Omega 2018, 3, 5563-5573.
- Fan, X.; Zhang, L.; Zhang, G.; Shu, Z.; Shi, J. Chitosan derived nitrogen-doped microporous carbons for high performance CO 2 capture. Carbon 2013, 61, 423-430. [CrossRef]
- Manmuanpom, N.; Thubsuang, U.; Dubas, S.T.; Wongkasemjit, S.; Chaisuwan, T. Enhanced CO 2 capturing over ultra-microporous carbon with nitrogen-active species prepared using one-step carbonization of polybenzoxazine for a sustainable environment. J. Environ. Manag. 2018, 223, 779-786. [CrossRef]
- Seema, H.; Kemp, K.C.; Le, N.H.; Park, S.-W.; Chandra, V.; Lee, J.W.; Kim, K.S. Highly selective CO 2 capture by S-doped microporous carbon materials. Carbon 2014, 66, 320-326. [CrossRef]
- Hao, G.P.; Li, W.C.; Qian, D.; Lu, A.H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO 2 capture. Adv. Mater. 2010, 22, 853-857. [CrossRef]
- Zhang, L.H.; Li, W.C.; Liu, H.; Wang, Q.G.; Tang, L.; Hu, Q.T.; Xu, W.J.; Qiao, W.H.; Lu, Z.Y.; Lu, A.H. Thermoregulated Phase-Transition Synthesis of Two-Dimensional Carbon Nanoplates Rich in sp 2 Carbon and Unimodal Ultramicropores for Kinetic Gas Separation. Angew. Chem. Int. Ed. 2018, 57, 1632-1635.
- Shen, W.; He, Y.; Zhang, S.; Li, J.; Fan, W. Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem 2012, 5, 1274-1279. [CrossRef]
- Guo, L.P.; Hu, Q.T.; Zhang, P.; Li, W.C.; Lu, A.H. Polyacrylonitrile-Derived Sponge-Like Micro/Macroporous Carbon for Selective CO 2 Separation. Chem. Eur. J. 2018, 24, 8369-8374. [CrossRef]
- Li, Q.; Yang, J.; Feng, D.; Wu, Z.; Wu, Q.; Park, S.S.; Ha, C.-S.; Zhao, D. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO 2 capture. Nano Res. 2010, 3, 632-642. [CrossRef]
- Estevez, L.; Barpaga, D.; Zheng, J.; Sabale, S.; Patel, R.L.; Zhang, J.G.; McGrail, B.P.; Motkuri, R.K. Hierarchically porous carbon materials for CO 2 capture: The role of pore structure. Ind. Eng. Chem. Res. 2018, 57, 1262-1268. [CrossRef]
- Wang, Y.; Wang, J.; Ma, C.; Qiao, W.; Ling, L. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO 2 . J. Colloid Interf. Sci. 2019, 534, 72-80. [CrossRef]
- Chang, B.; Shi, W.; Yin, H.; Zhang, S.; Yang, B. Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO 2 capture. Chem. Eng. J. 2019, 358, 1507-1518.
- Li, Y.; Xu, R.; Wang, X.; Wang, B.; Cao, J.; Yang, J.; Wei, J. Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO 2 capture. RSC Adv. 2018, 8, 19818-19826. [CrossRef]
- Gao, A.; Guo, N.; Yan, M.; Li, M.; Wang, F.; Yang, R. Hierarchical porous carbon activated by CaCO 3 from pigskin collagen for CO 2 and H 2 adsorption. Microporous Mesoporous Mater. 2018, 260, 172-179. [CrossRef]
- Marszewska, J.; Jaroniec, M. Tailoring porosity in carbon spheres for fast carbon dioxide adsorption. J. Colloid Interf. Sci. 2017, 487, 162-174. [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112-126. [CrossRef]
- Shi, X.; Xiao, H.; Liao, X.; Armstrong, M.; Chen, X.; Lackner, K.S. Humidity effect on ion behaviors of moisture-driven CO 2 sorbents. J. Chem. Phys. 2018, 149, 164708. [CrossRef]