Actinorhodopsin genes discovered diverse in freshwater habitats and among cultivated Actinobacteria (original) (raw)
Related papers
The ISME Journal, 2014
Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di-and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.
PLoS ONE, 2013
Actinorhodopsins (ActRs) are recently discovered proteorhodopsins present in Actinobacteria, enabling them to adapt to a wider spectrum of environmental conditions. Frequently, a large fraction of freshwater bacterioplankton belongs to the acI lineage of Actinobacteria and codes the LG1 type of ActRs. In this paper we studied the genotype variability of the LG1 ActRs. We have constructed two clone libraries originating from two environmentally different habitats located in Central Europe; the large alkaline lake Mondsee (Austria) and the small humic reservoir Jiřická (the Czech Republic). The 75 yielded clones were phylogenetically analyzed together with all ActR sequences currently available in public databases. Altogether 156 sequences were analyzed and 13 clusters of ActRs were distinguished. Newly obtained clones are distributed over all three LG1 subgroups-LG1-A, B and C. Eighty percent of the sequences belonged to the acI lineage (LG1-A ActR gene bearers) further divided into LG1-A1 and LG1-A2 subgroups. Interestingly, the two habitats markedly differed in genotype composition with no identical sequence found in both samples of clones. Moreover, Jiřická reservoir contained three so far not reported clusters, one of them LG1-C related, presenting thus completely new, so far undescribed, genotypes of Actinobacteria in freshwaters.
Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages
Environmental Microbiology, 2004
We analysed the phylogenetic relatedness of 16S rRNA genes from freshwater bacteria affiliated with the class Actinobacteria. A polymerase chain reaction assay was developed to identify reliably rare Actinobacteria-related inserts within 16S rRNA gene clone libraries. In 18 libraries constructed from seven freshwater systems, altogether 63 actinobacterial sequence types were collected from a total of > > > > 1800 clones. Sixty of the newly obtained sequences grouped within four distinct phylogenetic lineages. They constitute approximately 75% of the nearly complete sequences within these clusters that are presently available. A comparison with > > > > 300 sequences from various soil habitats revealed that two of these monophyletic actinobacterial clades (acI and acII) almost exclusively harbour 16S rRNA sequence types from freshwaters and estuaries. This may indicate that such bacteria are not inoculated to freshwaters from terrestrial sources, but are autochthonous components of freshwater microbial assemblages. In contrast, sequence types from freshwaters, marine sediments and soils were clearly mixed in another of the actinobacterial lineages (acIV). Sequence divergence within acIV was the highest of all four lineages (88% minimum similarity), which potentially reflects its radiation across several habitat types. Within the freshwater lineages, groups of essentially identical sequence types were retrieved from geographically distant aquatic systems with strikingly different hydrological and limnological characteristics. This points to the necessity to investigate genotypic variability, in situ abundances and activities of these Actinobacteria in freshwater plankton in greater detail by cultivation-independent techniques.
Comparative analyses of actinobacterial genomic fragments from Lake Kinneret
Environmental Microbiology, 2009
The high genomic G+C group of Actinobacteria possesses a variety of physiological and metabolic properties, and exhibits diverse lifestyles and ecological distribution. In recent years, Actinobacteria have been found to frequently dominate samples obtained from freshwater samples. Furthermore, phylogenetic analyses have shown that 16S rRNA genes from uncultured actinobacterial freshwater samples cluster in four distinct lineages. While these lineages are abundant, little is known about them and currently no pure-culture representatives or genomic fragments of them are available. In a screen of a genomic library from the moderately eutrophic freshwater Lake Kinneret, five fosmid clones containing actinobacterial genomic fragments were found. Three~40 kb genomic fragments were chosen for sequencing. Fosmids K003 and K005 showed high similarity and were affiliated with the acIV actinobacterial freshwater lineage. Fosmid K004 was affiliated with the highly abundant acI lineage. A comparative genomic analysis revealed high synteny between the two freshwater clones K003 and K005 but a lower synteny between these two and the K004 fosmid. Fosmids K003 and K005 share an identical arrangement of arginine biosynthesis gene while K004 showed a slightly different arrangement by lacking the argF gene. Fosmid Ant4E12, an Antarctic actinobacterial clone, showed a higher synteny with K003/5 than K004 and a similar arginine operon, but in a different genomic context. The Clusters of Orthologous Groups categories assignment of the three fosmids yielded genes that were mostly involved in amino acid and nucleotide metabolism, as well as transport and ribosomal RNA translation, structure and biogenesis. These genomic fragments represent the first sequences to be published from these lineages, providing a cornerstone for future work on this environmentally dominant group.
acI Actinobacteria Assemble a Functional Actinorhodopsin with Natively-synthesized Retinal
Applied and environmental microbiology, 2018
Freshwater lakes harbor complex microbial communities, but these ecosystems are often dominated by acI Actinobacteria. Members of this cosmopolitan lineage are proposed to bolster heterotrophic growth using phototrophy because their genomes encode actino-opsins ( This model has been difficult to validate experimentally because acI are not consistently culturable. Based primarily on genomes from single cells and metagenomes, we provide a detailed biosynthetic route for members of acI clades A and B to synthesize retinal and its carotenoid precursors. Consequently, acI cells should be able to natively assemble light-driven actinorhodopsins (holo-ActR) to pump protons, unlike many bacteria that encode opsins but may need to exogenously obtain retinal because they lack retinal machinery. Moreover, we show that all acI clades contain genes for a secondary branch of the carotenoid pathway, implying synthesis of a complex carotenoid. Transcription analysis of acI in a eutrophic lake shows ...
Environmental actinorhodopsin expression revealed by a new in situ filtration and fixation sampler
Environmental Microbiology Reports, 2012
Freshwater Actinobacteria are an important and dominant group of bacterioplankton in most temperate freshwater systems. Recently, metagenomic studies discovered rhodopsin-like protein-coding sequences present in Actinobacteria which could be a decisive hint for their success in freshwater ecosystems. We analysed the diversity of actinorhodopsin (ActR) in Lake Stechlin (northern Germany) and assessed the actR expression profile during a diurnal cycle. We obtained 85 positive actR clones which could be subsequently grouped to 17 operational taxonomic units assuming a 90% sequence similarity. The phylogenetic analysis points to a close relationship of all obtained sequences to the acI lineage of Actinobacteria, forming six independent clusters. For the first time, we followed in situ transcription of actR in Lake Stechlin revealing a rather constitutive circadian gene expression. For analysing in situ expression patterns of functional genes in aquatic ecosystems, such as actR, we invented a new in situ filtration and fixation sampler (IFFS). The IFFS enables the representative investigation of microbial transcriptomes in any aquatic ecosystem at all water depths. The IFFS sampler is simple and inexpensive, and we provide all engineering plans for an easy rebuild. Consequently, our IFFS is suitable to reliably study expression of any known functional gene of any aquatic microorganism.
Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC
Environmental Microbiology Reports, 2012
Free-living Actinobacteria are universally recognized as high-GC organisms. Freshwater Actinobacteria have been identified as abundant and prevalent members of freshwater microbial communities, but the two most common lineages (acI and acIV) have remained impossible to culture to date. We have analysed metagenomic data from lakes and estuaries, and show that members of acI and acIV are indeed abundant. We then show that the majority of actinobacterial reads from metagenomic datasets (both lakes and estuaries) are consistently low GC. Analysis of assembled scaffolds from these datasets also confirms that actinobacterial scaffolds are primarily low GC, although high-GC scaffolds were also observed, indicating both types of Actinobacteria coinhabit. Phylogenetic analysis of 16S rRNA gene sequences, both from PCR-based clone libraries and metagenomic reads, and the discovery of a low-GC scaffold containing a partial 16S rRNA gene, points to the abundance of the well-known acI and acIV lineages of freshwater in these habitats, both of which appear to be low GC.