Development of a specific inhibitor for the placental protease, cathepsin P (original) (raw)

Identification of new peptide amides as selective cathepsin L inhibitors: The first step towards selective irreversible inhibitors?

Bioorganic & Medicinal Chemistry Letters, 2013

A small library of peptide amides was designed to profile the cathepsin L active site. Within the cathepsin family of cysteine protease s, the first round of selection was on cathepsin L and cathepsin B, and then selected hits were further evaluated for binding to cathepsin K and cathepsin S. Five highly selective sequences with submicromolar affinities towards cathepsin L were identified. An acyloxymethyl ketone warhead was then attached to these sequences. Although these original irreversible inhibitors inactivate cathepsin L, it appears that the nature of the warhead drastically impact the selectivity profile of the resultin g covalent inhibitors.

Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo

FEBS Letters, 1999

Specific inhibitors for cathepsin L and cathepsin S have been developed with the help of computer-graphic modeling based on the stereo-structure. The common fragment, N-(Ltrans-carbamoyloxyrane-2-carbonyl)-phenylalanine-dimethylamide, is required for specific inhibition of cathepsin L. Seven novel inhibitors of the cathepsin L inhibitor Katunuma (CLIK) specifically inhibited cathepsin L at a concentration of 10 37 M in vitro, while almost no inhibition of cathepsins B, C, S and K was observed. Four of the CLIKs are stable, and showed highly selective inhibition for hepatic cathepsin L in vivo. One of the CLIK inhibitors contains an aldehyde group, and specifically inhibits cathepsin S at 10 37 M in vitro.

A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L

Molecules, 2020

Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.

Discovery of selective and nonpeptidic cathepsin S inhibitors

Bioorganic & Medicinal Chemistry Letters, 2008

Nonpeptidic, selective, and potent cathepsin S inhibitors were derived from an in-house pyrrolopyrimidine cathepsin K inhibitor by modification of the P2 and P3 moieties. The pyrrolopyrimidine-based inhibitors show nanomolar inhibition of cathepsin S with over 100-fold selectivity against other cysteine proteases, including cathepsin K and L. Some of the inhibitors showed cellular activities in mouse splenocytes as well as oral bioavailabilities in rats.

Inhibition of a Cathepsin L-Like Cysteine Protease by a Chimeric Propeptide-Derived Inhibitor †

Biochemistry, 2005

Like other papain-related cathepsins, congopain from Trypanosoma congolense is synthesized as a zymogen. We have previously identified a proregion-derived peptide (Pcp27), acting as a weak and reversible inhibitor of congopain. Pcp27 contains a 5-mer YHNGA motif, which is essential for selectivity in the inhibition of its mature form []. In the work presented here, a homology model of procongopain was generated and subsequently used to model a chimeric 50mer peptide (called H3-Pcp27) corresponding to the covalent linkage of an unrelated peptide (H3 helix from Antennapedia) to Pcp27. Molecular simulations suggested that H3-Pcp27 (pI ) 9.99) maintains an N-terminal helical conformation, and establishes more complementary electrostatic interactions (E coul ) -25.77 kcal/mol) than 16N-Pcp27, the 34-mer Pcp27 sequence plus the 16 native residues upstream from the proregion (E coul ) 0.20 kcal/mol), with the acid catalytic domain (pI ) 5.2) of the mature enzyme. In silico results correlated with the significant improvement of congopain inhibition by H3-Pcp27 (K i ) 24 nM), compared to 16N-Pcp27 (K i ) 1 µM). In addition, virtual alanine scanning of H3 and 16N identified the residues contributing most to binding affinity. Both peptides did not inhibit human cathepsins B and L. In conclusion, these data support the notion that the positively charged H3 helix favors binding, without modifying the selectivity of Pcp27 for congopain.

Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors

Journal of Structural Biology, 2011

Cathepsin L plays a key role in many pathophysiological conditions including rheumatoid arthritis, tumor invasion and metastasis, bone resorption and remodeling. Here we report the crystal structures of two analogous dipeptidyl inhibitor complexes which inhibit human cathepsin L in reversible and irreversible modes, respectively. To-date, there are no crystal structure reports of complexes of proteases with their glyoxal inhibitors or complexes of cathepsin L and their diazomethylketone inhibitors. These two inhibitors -inhibitor 1, an a-keto-b-aldehyde and inhibitor 2, a diazomethylketone, have different groups in the S1 subsite. Inhibitor 1 [Z-Phe-Tyr (OBut)-COCHO], with a K i of 0.6 nM, is the most potent, reversible, synthetic peptidyl inhibitor of cathepsin L reported to-date. The structure of the inhibitor 1 complex was refined up to 2.2 Å resolution. The structure of the complex of the inhibitor 2 [Z-Phe-Tyr (t-Bu)-diazomethylketone], an irreversible inhibitor that can inactivate cathepsin L at lM concentrations, was refined up to 1.76 Å resolution. These two inhibitors have substrate-like interactions with the active site cysteine (Cys25). Inhibitor 1 forms a tetrahedral hemithioacetal adduct, whereas the inhibitor 2 forms a thioester with Cys25. The inhibitor 1 b-aldehyde group is shown to make a hydrogen bond with catalytic His163, whereas the ketone carbonyl oxygen of the inhibitor 2 interacts with the oxyanion hole. tert-Butyl groups of both inhibitors are found to make several non-polar contacts with S 0 subsite residues of cathepsin L. These studies, combined with other complex structures of cathepsin L, reveal the structural basis for their potency and selectivity.

In Search of Selective Inhibitors of Cysteine Protease, Cathepsin K

International Journal of Peptide Research and Therapeutics, 2005

Two potential azapeptide inhibitors of cathepsin K were designed and synthesized. To analyze in detail interactions between these azainhibitors and the investigated cysteine protease, molecular dynamics simulations were performed. For the obtained compounds the equilibrium constants for dissociation of inhibitor -enzyme complex, K i , were determined. The examined azapeptides proved to be not as potent inhibitors of cathepsin K as they were expected to be according to the results of simulations. However, these calculations provide valuable information about probable structures of this type of peptidomimetics in the catalytic pocket of cathepsin K, which could be useful in designing of more selective inhibitors of this cysteine protease.

A double-headed cathepsin B inhibitor devoid of warhead

Protein Science, 2008

Most synthetic inhibitors of peptidases have been targeted to the active site for inhibiting catalysis through reversible competition with the substrate or by covalent modification of catalytic groups. Cathepsin B is unique among the cysteine peptidase for the presence of a flexible segment, known as the occluding loop, which can block the primed subsites of the substrate binding cleft. With the occluding loop in the open conformation cathepsin B acts as an endopeptidase, and it acts as an exopeptidase when the loop is closed. We have targeted the occluding loop of human cathepsin B at its surface, outside the catalytic center, using a high-throughput docking procedure. The aim was to identify inhibitors that would interact with the occluding loop thereby modulating enzyme activity without the help of chemical warheads against catalytic residues. From a large library of compounds, the in silico approach identified [2-[2-(2,4-dioxo-1,3-thiazolidin-3yl)ethylamino]-2-oxoethyl] 2-(furan-2-carbonylamino) acetate, which fulfills the working hypothesis. This molecule possesses two distinct binding moieties and behaves as a reversible, double-headed competitive inhibitor of cathepsin B by excluding synthetic and protein substrates from the active center. The kinetic mechanism of inhibition suggests that the occluding loop is stabilized in its closed conformation, mainly by hydrogen bonds with the inhibitor, thus decreasing endoproteolytic activity of the enzyme. Furthermore, the dioxothiazolidine head of the compound sterically hinders binding of the C-terminal residue of substrates resulting in inhibition of the exopeptidase activity of cathepsin B in a physiopathologically relevant pH range.