A Distance-Based Block Searching Algorithm (original) (raw)
Proceedings International Conference on Intelligent Systems For Molecular Biology Ismb International Conference on Intelligent Systems For Molecular Biology, 1995
Abstract
We present in this paper an algorithm for the multiple comparison of a set of protein sequences. Our approach is that of peptide matching and consists in looking for all the words that occur approximatively in at least q of the sequences in the set, where q is a parameter. Words are compared by using a reference object called a model, that is itself a word over the alphabet of the amino acids, and the comparison between a model and a word is based on w-length words instead of single symbols. This idea is similar to the one used in the Blast program in the case of pairwise comparisons. Two w-length words are considered to be related if an alignment without gaps of the two using a similarity matrix has a score greater than a certain threshold value t. In our case, we say that a k-length word u is an occurrence of a model m of the same length if every w-length subword of u is related to the corresponding subword of m in the sense given above. If a model m has occurrences in at least q of the sequences of the set, m is said to occur in the set. In percentage terms, the value of q may correspond to something as small as 5% of the sequences (search for recurrent words in a set of non homologous proteins) or as high as 70-100% (establishment of a list of all similar words as a first step in a multiple alignment program). The algorithm presented here is an efficient and exact way of looking for all the models, of a fixed length k or of the greatest possible length kmax, that occur in a set of sequences. It can work with any kind of scoring matrix and an extension of the algorithm allows for the introduction of gaps between a model and its occurrences.
henry soldano hasn't uploaded this paper.
Let henry know you want this paper to be uploaded.
Ask for this paper to be uploaded.