Interobserver variability in quality assessment of magnetic resonance images (original) (raw)

BMC Medical Imaging

Background The perceptual quality of magnetic resonance (MR) images influences diagnosis and may compromise the treatment. The purpose of this study was to evaluate how the image quality changes influence the interobserver variability of their assessment. Methods For the variability evaluation, a dataset containing distorted MRI images was prepared and then assessed by 31 experienced medical professionals (radiologists). Differences between observers were analyzed using the Fleiss’ kappa. However, since the kappa evaluates the agreement among radiologists taking into account aggregated decisions, a typically employed criterion of the image quality assessment (IQA) performance was used to provide a more thorough analysis. The IQA performance of radiologists was evaluated by comparing the Spearman correlation coefficients, ρ, between individual scores with the mean opinion scores (MOS) composed of the subjective opinions of the remaining professionals. Results The experiments show tha...

A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images

Journal of Imaging

No-reference image quality assessment (NR-IQA) methods automatically and objectively predict the perceptual quality of images without access to a reference image. Therefore, due to the lack of pristine images in most medical image acquisition systems, they play a major role in supporting the examination of resulting images and may affect subsequent treatment. Their usage is particularly important in magnetic resonance imaging (MRI) characterized by long acquisition times and a variety of factors that influence the quality of images. In this work, a survey covering recently introduced NR-IQA methods for the assessment of MR images is presented. First, typical distortions are reviewed and then popular NR methods are characterized, taking into account the way in which they describe MR images and create quality models for prediction. The survey also includes protocols used to evaluate the methods and popular benchmark databases. Finally, emerging challenges are outlined along with an in...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.