Mesoscopic structures and the Laplacian spectra of random geometric graphs (original) (raw)

Abstract

We investigate the Laplacian spectra of random geometric graphs (RGGs). The spectra are found to consist of both a discrete and a continuous part. The discrete part is a collection of Dirac delta peaks at integer values roughly centered around the mean degree. The peaks are mainly due to the existence of mesoscopic structures that occur far more abundantly in RGGs than in non-spatial networks. The probability of certain mesoscopic structures is analytically calculated for one-dimensional RGGs and they are shown to produce integer-valued eigenvalues that comprise a significant fraction of the spectrum, even in the large network limit. A phenomenon reminiscent of Bose-Einstein condensation in the appearance of zero eigenvalues is also found.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (34)

  1. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
  2. M. E. J. Newman, SIAM Review 45, pp. 167 (2003).
  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.- U. Hwang, Physics Reports 424, 175 (2006).
  4. J. A. Almendral, R. Criado, I. Leyva, J. M. Buldú, and I. Sendiña Nadal, Chaos 21, 016101 (2011).
  5. M. Zanin, P. A. Sousa, and E. Menasalvas, EPL 106, 30001 (2014).
  6. F. Chung, Spectral Graph Theory, vol. 92 of CBMS Regional conference series in mathematics (Conference Board of the Mathematical Sciences, Washington, DC, 1997).
  7. I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, Phys. Rev. E 64, 026704 (2001).
  8. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
  9. P. Mieghem, Graph Spectra for Complex Networks (Cam- bridge University Press, 2011).
  10. B. D. MacArthur and R. J. Sánchez-García, Phys. Rev. E 80, 026117 (2009).
  11. B. D. MacArthur, R. J. Sánchez-García, and J. W. An- derson, Discrete Applied Mathematics 156, 3525 (2008).
  12. A. Arenas, A. Díaz-Guilera, and C. J. Pérez-Vicente, Physica D: Nonlinear Phenomena 224, 27 (2006).
  13. A. Díaz-Guilera, J. Gómez-Gardeñes, Y. Moreno, and M. Nekovee, International Journal of Bifurcation and Chaos 19, 687 (2009).
  14. H. Aufderheide, L. Rudolf, and T. Gross, New Journal of Physics 14, 105014 (2012).
  15. A.-L. Do, J. Höfener, and T. Gross, New Journal of Physics 14, 115022 (2012).
  16. J. Dall and M. Christensen, Phys. Rev. E 66, 016121 (2002).
  17. M. Penrose, Random geometric graphs, Oxford studies in probability (Oxford University Press, 2003).
  18. M. Barthélemy, Phys. Rep. 499, 1 (2011).
  19. S. Bullock, L. Barnett, and E. A. Di Paolo, Complexity 16, 20 (2010).
  20. M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, IEEE Journal on Selected Areas in Communications 27, 1029 (2009).
  21. H. Xiao and E. Yeh, Communications Workshops (ICC), 2011 IEEE International Conference on pp. 1-6 (2011).
  22. N. T. Markov, M. Ercsey-Ravasz, D. C. Van Essen, K. Knoblauch, Z. Toroczkai, and H. Kennedy, Science 342 (2013).
  23. M. Ercsey-Ravasz, N. T. Markov, C. Lamy, D. C. V. Es- sen, K. Knoblauch, Z. Toroczkai, and H. Kennedy, Neu- ron 80, 184 (2013), ISSN 0896-6273.
  24. D. J. Higham, M. Rašajski, and N. Pržulj, Bioinformatics 24, 1093 (2008).
  25. J. Aguirre, J. M. Buldú, M. Stich, and S. C. Manrubia, PLoS ONE 6, e26324 (2011).
  26. R. Grone and R. Merris, SIAM J. Discrete Math. 7, 221 (1994).
  27. D. M. Cardoso, C. Delorme, and P. Rama, European Journal of Combinatorics 28, 665 (2007).
  28. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Nature 473, 167 (2011).
  29. N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Phys. Rev. E 83, 025101 (2011).
  30. M. Fiedler, Czechoslovak Mathematical Journal 23, 298 (1973).
  31. D. A. Spielman and S.-H. Teng, Linear Algebra and its Applications 421, 284 (2007).
  32. K. E. Bassler, P. J. Forrester, and N. E. Frankel, Journal of Mathematical Physics 50, 033302 (2009).
  33. K. E. Bassler, P. J. Forrester, and N. E. Frankel, Journal of Mathematical Physics 51, 123305 (2010).
  34. A. Nyberg and K. E. Bassler, unpublished (2014).