A Bioconvection Model for Squeezing Flow between Parallel Plates Containing Gyrotactic Microorganisms with Impact of Thermal Radiation and Heat Generation/Absorption (original) (raw)
Related papers
2019
This research paper investigates the bioconvection magneto hydrodynamics (MHD) squeezing nanofluid flow between two parallel plates. One of the plates is stretched and the other is kept fixed. In this study the water is taken as a base fluid because it is a favorable fluid for living microorganisms. Appropriate variables lead to a strong nonlinear ordinary differential system. The obtained nonlinear system has been solved via homotopy analysis method (HAM). The significant influences of thermophoresis and Brownian motion have also been taken in nanofluid model. The convergence of the method has been shown numerically. The variation of the Skin friction, Nusselt number, Sherwood number and their effects on the velocity, concentration, temperature and the density motile microorganism profiles are examined. It is observed that increasing thermal radiation augmented the temperature of the boundary layer area in fluid layer. This increase leads to drop in the rate of cooling for nanoflui...
AIP Advances, 2018
A time dependent symmetric flow with heat transmission of a second-grade fluid containing nanoparticles and gyrotactic microorganisms between two parallel plates in two dimensions is explored. Partial differential equations furnish the nonlinear ordinary differential equations due to the usage of relevant similarity transformations. Motion declines due to second grade fluid, energy elevates due to thermophoresis, concentration enhances due to Brownian motion and gyrotactic microorganisms profile elevates due to Peclet number. The unsteadiness parameter β has profound effect on the nanobioconvection flow within the plates. Optimal homotopy asymptotic method (OHAM) is followed to evaluate the transformed systems. Consistency and smoothness between the first and second orders of the optimal homotopy asymptotic method are revealed through graphs. Also, graphs are provided to manifest the impacts of each parameter.
International Journal of Heat and Mass Transfer, 2015
This article describes the unsteady flow of liquid containing nanoparticles and motile gyrotactic microorganisms between two parallel plates while keeping one moving and other fixed. The passively controlled nanofluid model is used to describe the nanoparticles concentration. Some instances of direct application of this nanofluid bioconvection study can be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil and gas-bearing sedimentary basins and many more. The governing partial differential equations are transformed to ordinary differential equations using the similarity transformations. The mathematica package based on homotopy analysis method is used to solve this problem. The physical phenomenon is explained by drawing the graphs for the temperature, nanoparticles concentration and density of motile microorganisms profiles. Also the tables are given which completely depicts the convergence of gained results.
IOP Conference Series: Materials Science and Engineering, 2018
This paper investigates the cross diffusion effects on fully developed mixed bioconvection of gyrotactic microorganisms through horizontal channel filled with nanoliquid under the influence of Soret and Dufour effects. The governing nonlinear partial differential equations are converted into set of nonlinear ordinary differential equations using appropriate similarity variables. The equations together with the boundary conditions are solved by using homotopy analysis method (HAM). The effects of thermophoresis, Brownian motion, Soret and Dufour parameters on mass and heat transfer are analysed graphically. It was found that Soret and Dufour effects was highly influenced in the temperature and the movement of microorganisms.
scientific reports, 2023
The current study examines the numerical simulation of the nanoliquid boundary layer flow comprising gyrotactic microbes with mass and energy transmission across a stretching inclined cylinder. The consequences of chemical reaction, heat generation/absorption, buoyancy force and Arrhenius activation energy is also considered on the nanofluid flow. The flow mechanism has been modeled in the form of system of nonlinear partial differential equations (PDEs). That system of PDEs is further transform into the dimensionless set of ordinary differential equations (ODEs) through the similarity substitutions. The obtained set of differential equations are numerically computed through the parametric continuation method (PCM). The effects of the distinct physical constraints on the energy, velocity, mass and the motile microbe profiles are discoursed and evaluated through Tables and Figures. It has been noticed that the velocity curve drops with the influence of inclination angle and Richardson number, while enhances against the variation of curvature factor. Furthermore, the energy field boosts with the upshot of inclination angle and heat source term, while declines with the influence of Prandtl number and Richardson number.
Journal of Porous Media, 2015
An approximate analytical investigation for free convection of non-Newtonian nanofluids over an isothermal impermeable horizontal flat plate, which is placed in a porous quiescent medium filled with non-Newtonian power law nanofluids, is carried out in this paper. A further assumption is also made that the medium contains both nanoparticles and gyrotactic microorganisms. The horizontal plate is deemed to have uniform surface temperature, solute, nanoparticles concentration, and density of motile microorganisms. The governing equations are transformed into a system of nonlinear ordinary differential equation using suitable similarity transformations. Approximate analytical solutions for the dimensionless velocity, temperature, nanoparticle concentration, and density of the motile microorganisms are obtained using the optimal homotopy asymptotic method (OHAM). The effects of important control parameters on the dimensionless velocity, temperature, nanoparticles concentration, and density of motile microorganisms, as well as on the local Nusselt, Sherwood, and motile microorganism numbers, are obtained and analyzed. It is found that nanofluid and bioconvection parameters have strong effects on local Nusselt, Sherwood, and density numbers.
World Journal of Mechanics, 2016
This paper presents a numerical study of the problem of unsteady thermo bioconvection boundary layer flow of a nanofluid containing gyrotactic microorganisms along a stretching sheet under the influence of magnetic field and viscous dissipation. With the help of usual transformation, the governing equations are transformed into unsteady nonlinear coupled partial differential equations. The numerical solution is obtained by using an explicit finite difference scheme. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. From the results it is found that both magnetic parameter and bioconvection Rayleigh number have positive effect on the dimensionless Nusselt number and density number of the motile microorganisms while the opposite behavior became clear in the case of Grashof number and Eckert number. The rescaled velocity, temperature, concentration and the density of motile microorganisms depend strongly on the governing parameters.
The current work explores the bioconvection micropolar nanofluid through a stretching surface subjected to thermal radiation, stratification, and heat and mass transmission. Bioconvection contains the gyrotactic (random movement of microorganism in the direction of gravity with weak horizontal verticity) unicellular microorganism in aqueous environments. Heat and mass transfer assists the bioconvection to occur. The aim of this research is to evaluate the heat transfer rate of nanofluid in the presence of a unicellular microorganism. Self-similar variables are induced to reduce the governing equations into a non-linear differential system which is further solved via the bvp4c algorithm to tackle the fluid problem. Using visual representations, the effects of a number of dimensional less factors arising from the dimensional less differential system are determined. For a range of limiting conditions, the obtained results of this model correspond precisely to those in the literature. This study's findings are highly regarded in the evaluation of the impact of key design factors on heat transfer and, therefore, in the optimization of industrial processes. Skin friction, local Nusselt number, Sherwood number, and density of microorganism concentrations are also studied for various parameters. Buoyancy ratio factor supports skin friction and density of microorganism profile to increase. Local Nusselt number drops due to the thermal radiation factor. Brownian motion speeds up the Sherwood number.
in this paper, the steady mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder is studied. The passively controlled nanofluid model is applied to approximate this nano-bioconvection flow problem, which is believed to be physically more realistic than previously commonly used actively controlled nanofluid models. Using a suitable transformation, the nonlinear system of partial differential equations is converted into non-similar equations. These resulting equations are solved numerically using an accurate implicit finite-difference method. The present numerical results are compared with available data and are found in an excellent agreement. The skin friction coefficient, local Nusselt number, and the local density of the motile microorganism profiles are examined subject to various parameters of interest, namely Richardson number, thermophoresis parameter, Brownian motion parameter, bio-convection Lewis number, bio-convection Rayleigh number, and bio-convection Péclet number for various values of surface transverse curvature parameter. The results indicate that the skin friction coefficient, local Nusselt number, and the local density of the motile microorganisms enhance with a decrease in either of the bioconvection Péclet number or the thermophoresis parameter and with an increase in either of the Brownian motion parameter, bioconvection Lewis number or the Richardson number. Increasing and decreasing the buoyancy ratio parameter and bioconvection Rayleigh number respectively, lead to increase in the local skin friction coefficient and the local rate of heat transfer and reduction in the local density of motile microorganism. This type of study finds application in engineering, geothermal and industrial fields such as the design of microbial fuel cell and bio-convection nano-technological devices.