Effects of Perforated Length and Fractures on Productivity of Horizontal Wells: An Experimental Approach (original) (raw)
2002, Journal of the Japan Petroleum Institute
Many simulation studies were conducted about the importance of perforated well length on horizontal well performance. All of these studies suffered from their dependence upon theoretical models, which lack plausibility due to the lack of accurate experimental and/or field data. Therefore, there is a great need for experimental data to be used for tuning the single well simulation models before applying a full field simulation of oil reservoirs with horizontal wells. This experimental study was designed to investigate the influences of fraction of perforated length, total length, and fractures, which do not intersect with well axis, on the productivity of horizontal wells. An experimental packs were used to represent the homogeneous unconsolidated porous media while a perforated aluminum sheet was used as a horizontal fracture parallel (horizontal fracture) and perpendicular but not intersecting (vertical fracture) the horizontal well axis in sandpack. Eighteen runs for homogeneous porous media with and without fracture systems were carried-out using horizontal wells with different lengths and different perforation fractions of total length. The results indicated that the increase of perforated well length increases flow rate of the horizontal well for both homogeneous and fractured formations that do not intersect with well axis. Furthermore, horizontally-fractured formation parallel to and vertically-fractured formation vertical to well axis improve productivity of horizontal well for different perforation ratios. A single vertically-fractured porous medium provides higher productivity ratio than horizontally-fractured one for the same perforation length and intensity, when both fracture systems do not intersect with well axis. Several empirical equations were developed to correlate the horizontal well productivity with perforated length for homogeneous and fractured porous media.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.