Cysteine Cathepsin Protease Inhibition: An update on its Diagnostic, Prognostic and Therapeutic Potential in Cancer (original) (raw)

Cysteine cathepsins and their potential in clinical therapy and biomarker discovery

PROTEOMICS - Clinical Applications, 2014

Since their discovery, cysteine cathepsins were generally considered to be involved mainly in the nonspecific bulk protein degradation that takes place within the lysosomes. However, it has become clear that their proteolytical activity can also influence various specific pathological processes such as cancer, arthritis, and atherosclerosis. Furthermore, their localization was found not to be limited strictly to the lysosomes. In the light of those findings, it is not surprising that cysteine cathepsins are currently considered as highly relevant clinical targets. Moreover, recent development of proteomic-based methods for identification of novel physiological substrates of proteases provides a major opportunity also in the field of cysteine cathepsins. In this review, we will therefore present cysteine cathepsin roles in disease progression and discuss their potential relevance as prognostic and diagnostic biomarkers.

The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance

International Journal of Molecular Sciences

Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology.

Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model

Biochimie, 2010

Proteolytic activity is required for several key processes in cancer development and progression, including tumor growth, invasion and metastasis. Accordingly, high levels of protease expression and activity have been found to correlate with malignant progression and poor patient prognosis in a wide variety of human cancers. Members of the papain family of cysteine cathepsins are among the protease classes that have been functionally implicated in cancer. Therefore, the discovery of effective cathepsin inhibitors has considerable potential for anti-cancer therapy. In this study we describe the identification of a novel, reversible cathepsin inhibitor, VBY-825, which has high potency against cathepsins B, L, S and V. VBY-825 was tested in a preclinical model of pancreatic islet cancer and found to significantly decrease tumor burden and tumor number. Thus, the identification of VBY-825 as a new and effective anti-tumor drug encourages the therapeutic application of cathepsin inhibitors in cancer.

Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumour invasion

Biochimie, 2008

Cysteine cathepsins have been known for a long time to play an important role in cancer progression and metastasis. Several studies have proposed the concept of anti-cathepsin therapy in cancer treatment. On the other hand, cysteine cathepsins have been recently found to play a role in tumour cell death through mediation of apoptosis. The purpose of this mini-review is therefore to provide an insight into the mechanisms by which cysteine cathepsins modulate apoptosis and/or participate in tumour invasion, and to evaluate the impact of these enzymes on both tumour progression and development of potential strategies for cancer treatment.

ARTICLE IN PRESS G Model Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts, appeared to be overexpressed as well in various types of cancers. In this review, the physiological functions of CatK are presented and compared to its potential role in pathobiolology of processes associated with tumour growth, invasion and metastasis of cancer cells and their interactions with the tumour microenvironment. CatK activity is either indirectly affecting signalling pathways, or directly degrading extracellular matrix (ECM) proteins, for example in bone metastases. Recently, CatK was also found in glioma, possibly regulating cancer stem-like cell mobilisation and modulating recently found physiological CatK substrates, including chemokines and growth factors. Moreover, CatK may be useful in differential diagnosis and may have prognostic value. Finally, the application of CatK inhibitors, which are already in clinical trials for treatment of osteoporosis, has a potential to attenuate cancer aggressiveness.

Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis

Cancer Cell, 2004

Tumors develop through successive stages characterized by changes in gene expression and protein function. Gene expression profiling of pancreatic islet tumors in a mouse model of cancer revealed upregulation of cathepsin cysteine proteases. Cathepsin activity was assessed using chemical probes allowing biochemical and in vivo imaging, revealing increased activity associated with the angiogenic vasculature and invasive fronts of carcinomas, and differential expression in immune, endothelial, and cancer cells. A broad-spectrum cysteine cathepsin inhibitor was used to pharmacologically knock out cathepsin function at different stages of tumorigenesis, impairing angiogenic switching in progenitor lesions, as well as tumor growth, vascularity, and invasiveness. Cysteine cathepsins are also upregulated during HPV16-induced cervical carcinogenesis, further encouraging consideration of this protease family as a therapeutic target in human cancers.

Expression, Intracellular Localization, and Maturation of Cysteine Cathepsins in Renal Embryonic and Cancer Cell Lines

Biokhimiya, 2023

Cysteine cathepsins play an important role in tumor development and metastasis. The expression of these enzymes is often increased in many types of tumor cells. Cysteine cathepsins contribute to carcinogenesis through a number of mechanisms, including proteolysis of extracellular matrix and signaling molecules on the cell surface, as well as degradation of transcription factors and disruption of signaling cascades in the cell nucleus. Distinct oncogenic functions have been reported for several members of the cysteine cathepsin family in various types of cancer, but a comparative study of all eleven cysteine cathepsins in one experimental model is still missing. In this work, we assessed and compared the expression, localization, and maturation of all eleven cysteine cathepsins in embryonic kidney cells HEK293 and kidney cancer cell lines 769-P and A-498. We found that the expression of cathepsins V, B, Z, L, and S was 3-to 9-fold higher in kidney tumor cells than in embryonic cells. We also showed that all cysteine cathepsins were present in varying amounts in the nucleus of both embryonic and tumor cells. Notably, more than half of the cathepsin Z or K and over 88% of cathepsin F were localized in tumor cell nuclei. Moreover, mature forms of cysteine cathepsins were more prevalent in tumor cells than in embryonic cells. These results can be further used to develop novel diagnostic tools and may assist in the investigation of cysteine cathepsins as potential therapeutic targets.

Assessment of the Roles of Cathepsins B, H and L in the Progression of Colorectal Cancer

2013

Cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes, while they concurrently play an essential role in cancer progression, invasion and metastasis. The purposes of our study were to: a) compare the expression levels of cathepsins B, H and L in the supernatants of colon cancer tissues from 74 patients versus the corresponding enzymic expressions of supernatants in the adjacent normal colorectal tissues; and b) correlate our results to the grade of the malignancy by using an enzyme-linked immunosorbent assay (ELISA). The findings indicated that cathepsins B, H and L of all malignant tissues exhibited significantly higher expression levels than their corresponding controls. Furthermore, cathepsin B expression levels doubled in all tumor samples and this increase remained quite steady with tumor stage advancement, in contrast to cathepsin H expression which rose significantly as malignancy progressed. Specifically, cathepsin H concentration was higher than the corresponding control: 155% in B1 stage and 204.44% in D stage. Among the three investigated proteases, cathepsin L has shown the highest increase, which in D stage stood 261.03% higher than the corresponding control. The results at hand suggested that cysteine protease H and L expression levels could be of critical value in the diagnosis and progression of colon cancer.

Evaluation of novel cathepsin-X inhibitors in vitro and in vivo and their ability to improve cathepsin-B-directed antitumor therapy

Cellular and Molecular Life Sciences, 2022

New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity ...