ACValidator: A novel assembly-based approach for in silico verification of circular RNAs (original) (raw)
Related papers
CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs
Genomics, Proteomics & Bioinformatics, 2019
Circular RNAs (circRNAs), covalently closed continuous RNA loops, are generated from cognate linear RNAs through back splicing events, and alternative splicing events may generate different circRNA isoforms at the same locus. However, the challenges of reconstruction and quantification of alternatively spliced full-length circRNAs remain unresolved. On the basis of the internal structural characteristics of circRNAs, we developed CircAST, a tool to assemble alternatively spliced circRNA transcripts and estimate their expression by using multiple splice graphs.
BMC Bioinformatics, 2021
Background Circular RNA (circRNA) is an emerging class of RNA molecules attracting researchers due to its potential for serving as markers for diagnosis, prognosis, or therapeutic targets of cancer, cardiovascular, and autoimmune diseases. Current methods for detection of circRNA from RNA sequencing (RNA-seq) focus mostly on improving mapping quality of reads supporting the back-splicing junction (BSJ) of a circRNA to eliminate false positives (FPs). We show that mapping information alone often cannot predict if a BSJ-supporting read is derived from a true circRNA or not, thus increasing the rate of FP circRNAs. Results We have developed Circall, a novel circRNA detection method from RNA-seq. Circall controls the FPs using a robust multidimensional local false discovery rate method based on the length and expression of circRNAs. It is computationally highly efficient by using a quasi-mapping algorithm for fast and accurate RNA read alignments. We applied Circall on two simulated dat...
Comparison of circular RNA prediction tools
Nucleic acids research, 2015
CircRNAs are novel members of the non-coding RNA family. For several decades circRNAs have been known to exist, however only recently the widespread abundance has become appreciated. Annotation of circRNAs depends on sequencing reads spanning the backsplice junction and therefore map as non-linear reads in the genome. Several pipelines have been developed to specifically identify these non-linear reads and consequently predict the landscape of circRNAs based on deep sequencing datasets. Here, we use common RNAseq datasets to scrutinize and compare the output from five different algorithms; circRNA_finder, find_circ, CIRCexplorer, CIRI, and MapSplice and evaluate the levels of bona fide and false positive circRNAs based on RNase R resistance. By this approach, we observe surprisingly dramatic differences between the algorithms specifically regarding the highly expressed circRNAs and the circRNAs derived from proximal splice sites. Collectively, this study emphasizes that circRNA anno...
PLOS Computational Biology, 2020
Over the past two decades, researchers have discovered a special form of alternative splicing that produces a circular form of RNA. Although these circular RNAs (circRNAs) have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of current studies has been on the tissue-specific circRNAs that exist only in one tissue but not in other tissues or on the disease-specific circRNAs that exist in certain disease conditions, such as cancer, but not under normal conditions. This approach was conducted in the relative absence of methods that analyze a group of common circRNAs that exist in both conditions, but are more abundant in one condition relative to another (differentially expressed). Studies of differentially expressed circRNAs (DECs) between two conditions would serve as a significant first step in filling this void. Here, we introduce a novel computational tool, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the DECs between two conditions from high-throughput sequencing data. Using rat retina RNA-seq data from ischemic and normal conditions, we show that over 74% of identifiable circRNAs are expressed in both conditions and over 40 circRNAs are differentially expressed between two conditions. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient approach to detect DECs using rRNA depleted RNA-seq data.
2018
Circular RNAs (cirRNAs) are long, noncoding endogenous RNA molecules and covalently closed continuous loop without 5′–3′ polarity and polyadenylated tail which are largely concentrated in the nucleus. CirRNA regulates gene expression by modulating microRNAs and functions as potential biomarker. CirRNAs can translate in vivo to link between their expression and disease. They are resistant to RNA exonuclease and can convert to the linear RNA by microRNA which can then act as competitor to endogenous RNA. This chapter summarizes the evolutionary conservation and expression of cirRNAs, their identification, highlighting various computational approaches on cirRNA, and translation with a focus on the breakthroughs and the challenges in this new field.
TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence
Nucleic Acids Research, 2020
TransCirc (https://www.biosino.org/transcirc/) is a specialized database that provide comprehensive evidences supporting the translation potential of circular RNAs (circRNAs). This database was generated by integrating various direct and indirect evidences to predict coding potential of each human circRNA and the putative translation products. Seven types of evidences for circRNA translation were included: (i) ribosome/polysome binding evidences supporting the occupancy of ribosomes onto circRNAs; (ii) experimentally mapped translation initiation sites on circRNAs; (iii) internal ribosome entry site on circRNAs; (iv) published N-6-methyladenosine modification data in circRNA that promote translation initiation; (v) lengths of the circRNA specific open reading frames; (vi) sequence composition scores from a machine learning prediction of all potential open reading frames; (vii) mass spectrometry data that directly support the circRNA encoded peptides across back-splice junctions. Tra...
Docker4Circ: A Framework for a Reproducible Characterization of CircRNAs from RNA-Seq Data
2019
Recently the increased cost-effectiveness of high-throughput technologies has made available a large number of RNA sequencing datasets to identify circular RNAs (circRNAs). However, despite many computational tools were developed to predict circRNAs, a limited number of workflows exists to predict and to characterize circRNAs. Moreover, to the best of our knowledge, these available workflows do not ensure computational reproducibility and require advanced bash scripting skills to be correctly installed and used. To cope with these critical aspects we present Docker4Circ, a new computational framework designed for a comprehensive analysis of circRNAs composed of: circRNAs prediction, classification and annotation using public databases, the back-splicing sequence reconstruction; the internal alternative splicing of circularizing exons; the alignment-free circRNAs quantification from RNA-Seq reads, and, finally, their differential expression analysis. Docker4Circ was specifically desi...